[États d’équilibre pour applications de l’intervalle : le potentiel ]
Soit une application multimodale de classe dont les dérivées le long des orbites des points critiques sont à croissance polynomiale, où est un intervalle. Nous démontrons l’existence et l’unicité d’un état d’équilibre pour le potentiel lorsque est proche de , et que la fonction de pression est analytique sur un intervalle approprié près de .
Let be a multimodal interval map satisfying polynomial growth of the derivatives along critical orbits. We prove the existence and uniqueness of equilibrium states for the potential for close to , and also that the pressure function is analytic on an appropriate interval near .
Keywords: equilibrium states, thermodynamic formalism, interval maps, non-uniform hyperbolicity
Mot clés : États d'équilibre, formalisme thermodynamique, applications de l'intervalle, hyperbolicité non-uniforme
@article{ASENS_2009_4_42_4_559_0, author = {Bruin, Henk and Todd, Mike}, title = {Equilibrium states for interval maps: the potential $-t\log |Df|$}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {559--600}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 42}, number = {4}, year = {2009}, doi = {10.24033/asens.2103}, mrnumber = {2568876}, zbl = {1192.37051}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2103/} }
TY - JOUR AU - Bruin, Henk AU - Todd, Mike TI - Equilibrium states for interval maps: the potential $-t\log |Df|$ JO - Annales scientifiques de l'École Normale Supérieure PY - 2009 SP - 559 EP - 600 VL - 42 IS - 4 PB - Société mathématique de France UR - http://archive.numdam.org/articles/10.24033/asens.2103/ DO - 10.24033/asens.2103 LA - en ID - ASENS_2009_4_42_4_559_0 ER -
%0 Journal Article %A Bruin, Henk %A Todd, Mike %T Equilibrium states for interval maps: the potential $-t\log |Df|$ %J Annales scientifiques de l'École Normale Supérieure %D 2009 %P 559-600 %V 42 %N 4 %I Société mathématique de France %U http://archive.numdam.org/articles/10.24033/asens.2103/ %R 10.24033/asens.2103 %G en %F ASENS_2009_4_42_4_559_0
Bruin, Henk; Todd, Mike. Equilibrium states for interval maps: the potential $-t\log |Df|$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 42 (2009) no. 4, pp. 559-600. doi : 10.24033/asens.2103. http://archive.numdam.org/articles/10.24033/asens.2103/
[1] The entropy of a derived automorphism, Dokl. Akad. Nauk SSSR 128 (1959), 647-650. | MR | Zbl
,[2] Positive transfer operators and decay of correlations, Advanced Series in Nonlinear Dynamics 16, World Scientific Publishing Co. Inc., 2000. | MR | Zbl
,[3] Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math. 470, Springer, Berlin, 1975. | MR | Zbl
,[4] Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Comm. Math. Phys. 168 (1995), 571-580. | MR | Zbl
,[5] Topological conditions for the existence of absorbing Cantor sets, Trans. Amer. Math. Soc. 350 (1998), 2229-2263. | MR | Zbl
,[6] Minimal Cantor systems and unimodal maps, J. Difference Equ. Appl. 9 (2003), 305-318. | MR | Zbl
,[7] Equilibrium states for -unimodal maps, Ergodic Theory Dynam. Systems 18 (1998), 765-789. | MR | Zbl
& ,[8] Decay of correlations in one-dimensional dynamics, Ann. Sci. École Norm. Sup. 36 (2003), 621-646. | Numdam | MR | Zbl
, & ,[9] Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math. 172 (2008), 509-533. | MR | Zbl
, , & ,[10] Equilibrium states for interval maps: potentials with , Comm. Math. Phys. 283 (2008), 579-611. | MR | Zbl
& ,[11] Return time statistics for unimodal maps, Fund. Math. 176 (2003), 77-94. | Zbl
& ,[12] Expansion of derivatives in one-dimensional dynamics, Israel J. Math. 137 (2003), 223-263. | Zbl
& ,[13] Statistics of closest return for some non-uniformly hyperbolic systems, Ergodic Theory Dynam. Systems 21 (2001), 401-420. | Zbl
,[14] Pressure and equilibrium states for countable state Markov shifts, Israel J. Math. 131 (2002), 221-257. | Zbl
, & ,[15] The topological entropy of the transformation , Monatsh. Math. 90 (1980), 117-141. | Zbl
,[16] Equilibrium states for piecewise monotonic transformations, Ergodic Theory Dynam. Systems 2 (1982), 23-43. | Zbl
& ,[17] Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z. 180 (1982), 119-140. | Zbl
& ,[18] Quadratic maps without asymptotic measure, Comm. Math. Phys. 127 (1990), 319-337. | Zbl
& ,[19] Topologically transitive subsets of piecewise monotonic maps, which contain no periodic points, Monatsh. Math. 107 (1989), 217-239. | Zbl
& ,[20] Lifting measures to Markov extensions, Monatsh. Math. 108 (1989), 183-200. | Zbl
,[21] Equilibrium states in ergodic theory, London Math. Soc. Stud. Texts 42, Cambridge Univ. Press, 1998. | MR | Zbl
,[22] Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps, Comm. Math. Phys. 149 (1992), 31-69. | MR | Zbl
& ,[23] Getting rid of the negative Schwarzian derivative condition, Ann. of Math. 152 (2000), 743-762. | MR | Zbl
,[24] Some properties of absolutely continuous invariant measures on an interval, Ergodic Theory Dynam. Systems 1 (1981), 77-93. | MR | Zbl
,[25] Phase transition in subhyperbolic Julia sets, Ergodic Theory Dynam. Systems 16 (1996), 125-157. | MR | Zbl
& ,[26] On “thermodynamics” of rational maps. I. Negative spectrum, Comm. Math. Phys. 211 (2000), 705-743. | MR | Zbl
& ,[27] On thermodynamics of rational maps. II. Non-recurrent maps, J. London Math. Soc. 67 (2003), 417-432. | MR | Zbl
& ,[28] Gibbs states on the symbolic space over an infinite alphabet, Israel J. Math. 125 (2001), 93-130. | MR | Zbl
& ,[29] Almost sure invariance principle for nonuniformly hyperbolic systems, Comm. Math. Phys. 260 (2005), 131-146. | MR | Zbl
& ,[30] One-dimensional dynamics, Ergebnisse Math. Grenzg. (3) 25, Springer, 1993. | MR | Zbl
& ,[31] Entropy of piecewise monotone mappings, Studia Math. 67 (1980), 45-63. | MR | Zbl
& ,[32] Non-uniform hyperbolicity and universal bounds for -unimodal maps, Invent. Math. 132 (1998), 633-680. | MR | Zbl
& ,[33] Equilibrium measures for some one dimensional maps, preprint http://www.math.psu.edu/pesin/publications.html.
& ,[34] Thermodynamical formalism associated with inducing schemes for one-dimensional maps, Mosc. Math. J. 5 (2005), 669-678, 743-744. | MR | Zbl
& ,[35] Equilibrium measures for maps with inducing schemes, J. Mod. Dyn. 2 (2008), 397-430. | MR | Zbl
& ,[36] Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc. 119 (1993), 309-317. | MR | Zbl
,[37] Hausdorff-dimension für stückweise monotone Abbildungen, Thèse, Universität Wien, 1987.
,[38] An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat. 9 (1978), 83-87. | MR | Zbl
,[39] Thermodynamic formalism, Encyclopedia of Mathematics and its Applications 5, Addison-Wesley Publishing Co., Reading, Mass., 1978. | MR | Zbl
,[40] Thermodynamic formalism for Markov shifts, Thèse, 2000, Tel-Aviv University.
,[41] Phase transitions for countable Markov shifts, Comm. Math. Phys. 217 (2001), 555-577. | MR | Zbl
,[42] Existence of Gibbs measures for countable Markov shifts, Proc. Amer. Math. Soc. 131 (2003), 1751-1758. | MR | Zbl
,[43] Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), 21-64. | MR | Zbl
,[44] Zur Hausdorff-Dimension spezieller invarianter Maße für Collet-Eckmann Abbildungen, Diplomarbeit, Erlangen, 1994.
,[45] Distortion bounds for unimodal maps, Fund. Math. 193 (2007), 37-77. | MR | Zbl
,[46] Real bounds, ergodicity and negative Schwarzian for multimodal maps, J. Amer. Math. Soc. 17 (2004), 749-782. | MR | Zbl
& ,[47] Recurrence times and rates of mixing, Israel J. Math. 110 (1999), 153-188. | MR | Zbl
,[48] Invariant measures for general(ized) induced transformations, Proc. Amer. Math. Soc. 133 (2005), 2283-2295. | MR | Zbl
,Cité par Sources :