Duality of Schramm-Loewner evolutions
[Dualité des évolutions de Schramm-Loewner]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 42 (2009) no. 5, pp. 697-724.

On démontre dans cette note une version de la dualité conjecturée pour les évolutions de Schramm-Loewner, en établissant des identités en distribution exactes entre certains arcs de SLEκ chordal, κ>4, et des versions appropriées de SLEκ^, κ^=16/κ.

In this note, we prove a version of the conjectured duality for Schramm-Loewner Evolutions, by establishing exact identities in distribution between some boundary arcs of chordal SLEκ, κ>4, and appropriate versions of SLEκ^, κ^=16/κ.

DOI : 10.24033/asens.2107
Classification : 60G17, 60K35
Keywords: Schramm-Loewner evolution, duality, partition function
Mot clés : Évolution de Schramm-Loewner, dualité, fonction de partition
@article{ASENS_2009_4_42_5_697_0,
     author = {Dub\'edat, Julien},
     title = {Duality of {Schramm-Loewner} evolutions},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {697--724},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 42},
     number = {5},
     year = {2009},
     doi = {10.24033/asens.2107},
     zbl = {1205.60147},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.2107/}
}
TY  - JOUR
AU  - Dubédat, Julien
TI  - Duality of Schramm-Loewner evolutions
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2009
SP  - 697
EP  - 724
VL  - 42
IS  - 5
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/asens.2107/
DO  - 10.24033/asens.2107
LA  - en
ID  - ASENS_2009_4_42_5_697_0
ER  - 
%0 Journal Article
%A Dubédat, Julien
%T Duality of Schramm-Loewner evolutions
%J Annales scientifiques de l'École Normale Supérieure
%D 2009
%P 697-724
%V 42
%N 5
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/asens.2107/
%R 10.24033/asens.2107
%G en
%F ASENS_2009_4_42_5_697_0
Dubédat, Julien. Duality of Schramm-Loewner evolutions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 42 (2009) no. 5, pp. 697-724. doi : 10.24033/asens.2107. https://www.numdam.org/articles/10.24033/asens.2107/

[1] J. Dubédat, SLE(κ,ρ) martingales and duality, Ann. Probab. 33 (2005), 223-243. | MR | Zbl

[2] J. Dubédat, Euler integrals for commuting SLEs, Journal Statist. Phys. 123 (2006), 1183-1218. | MR | Zbl

[3] J. Dubédat, Commutation relations for SLE, Comm. Pure Applied Math. 60 (2007), 1792-1847. | MR | Zbl

[4] J. Dubédat, SLE and the free field: Partition functions and couplings, J. Amer. Math. Soc. 22 (2009), 995-1054. | MR | Zbl

[5] M. J. Kozdron & G. F. Lawler, The configurational measure on mutually avoiding SLE paths, in Universality and renormalization, Fields Inst. Commun. 50, Amer. Math. Soc., 2007, 199-224. | MR | Zbl

[6] G. Lawler, O. Schramm & W. Werner, Conformal restriction: the chordal case, J. Amer. Math. Soc. 16 (2003), 917-955. | MR | Zbl

[7] G. F. Lawler, Conformally invariant processes in the plane, Mathematical Surveys and Monographs 114, Amer. Math. Soc., 2005. | MR | Zbl

[8] G. F. Lawler, O. Schramm & W. Werner, Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab. 32 (2004), 939-995. | MR | Zbl

[9] G. F. Lawler & W. Werner, The Brownian loop soup, Probab. Theory Related Fields 128 (2004), 565-588. | MR | Zbl

[10] C. Pommerenke, Boundary behaviour of conformal maps, Grund. Math. Wiss. 299, Springer, 1992. | MR | Zbl

[11] D. Revuz & M. Yor, Continuous martingales and Brownian motion, third éd., Grund. Math. Wiss. 293, Springer, 1999. | MR | Zbl

[12] S. Rohde & O. Schramm, Basic properties of SLE, Ann. of Math. 161 (2005), 883-924. | MR | Zbl

[13] O. Schramm & S. Sheffield, Contour lines of the two-dimensional discrete Gaussian free field, Acta Math. 202 (2009), 21-137. | MR | Zbl

[14] O. Schramm & D. B. Wilson, SLE coordinate changes, New York J. Math. 11 (2005), 659-669. | EuDML | MR | Zbl

[15] W. Werner, Girsanov’s transformation for SLE(κ,ρ) processes, intersection exponents and hiding exponents, Ann. Fac. Sci. Toulouse Math. 13 (2004), 121-147. | EuDML | Numdam | MR | Zbl

[16] W. Werner, Random planar curves and Schramm-Loewner evolutions, in Lectures on probability theory and statistics, Lecture Notes in Math. 1840, Springer, 2004, 107-195. | MR | Zbl

[17] D. Zhan, Duality of chordal SLE, Invent. Math. 174 (2008), 309-353. | MR | Zbl

[18] D. Zhan, Reversibility of chordal SLE, Ann. Probab. 36 (2008), 1472-1494. | MR | Zbl

  • Duplantier, Bertrand; Han, Yong; Nguyen, Chi; Zinsmeister, Michel Complex Generalized Integral Means Spectrum of Drifted Whole-Plane SLE and LLE, Annales Henri Poincaré, Volume 25 (2024) no. 1, p. 425 | DOI:10.1007/s00023-023-01300-6
  • Ang, Morris; Holden, Nina; Sun, Xin Integrability of SLE via conformal welding of random surfaces, Communications on Pure and Applied Mathematics, Volume 77 (2024) no. 5, p. 2651 | DOI:10.1002/cpa.22180
  • Sun, Xin; Yu, Pu SLE Partition Functions via Conformal Welding of Random Surfaces, International Mathematics Research Notices, Volume 2024 (2024) no. 24, p. 14763 | DOI:10.1093/imrn/rnae260
  • Ang, Morris; Yu, Pu Reversibility of whole-plane SLE for κ>8, Probability Theory and Related Fields (2024) | DOI:10.1007/s00440-024-01333-w
  • Viklund, Fredrik; Wang, Yilin The Loewner–Kufarev energy and foliations by Weil–Petersson quasicircles, Proceedings of the London Mathematical Society, Volume 128 (2024) no. 2 | DOI:10.1112/plms.12582
  • Yu, Pu Time-reversal of multiple-force-point chordal SLEκ(ρ_), Electronic Journal of Probability, Volume 28 (2023) no. none | DOI:10.1214/23-ejp1040
  • Bernardi, Olivier; Holden, Nina; Sun, Xin Percolation on Triangulations: A Bijective Path to Liouville Quantum Gravity, Memoirs of the American Mathematical Society, Volume 289 (2023) no. 1440 | DOI:10.1090/memo/1440
  • Di Francesco, Philippe; Duplantier, Bertrand; Golinelli, Olivier; Guitter, Emmanuel Exponents for Hamiltonian paths on random bicubic maps and KPZ, Nuclear Physics B, Volume 987 (2023), p. 116084 | DOI:10.1016/j.nuclphysb.2023.116084
  • Duplantier, Bertrand; Golinelli, Olivier; Guitter, Emmanuel Hamiltonian cycles on bicolored random planar maps, Nuclear Physics B, Volume 995 (2023), p. 116335 | DOI:10.1016/j.nuclphysb.2023.116335
  • Gwynne, Ewain; Pfeffer, Joshua; Park, Minjae Loewner evolution driven by complex Brownian motion, The Annals of Probability, Volume 51 (2023) no. 6 | DOI:10.1214/23-aop1639
  • Yearwood, Stephen The topology of SLEκ is random for κ>4, Electronic Journal of Probability, Volume 27 (2022) no. none | DOI:10.1214/22-ejp871
  • Wang, Yilin Large deviations of Schramm-Loewner evolutions: A survey, Probability Surveys, Volume 19 (2022) no. none | DOI:10.1214/22-ps9
  • Ang, Morris; Gwynne, Ewain Liouville quantum gravity surfaces with boundary as matings of trees, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 57 (2021) no. 1 | DOI:10.1214/20-aihp1068
  • Gwynne, Ewain; Miller, Jason; Qian, Wei Conformal Invariance of CLEΚ on the Riemann Sphere for Κ ∈(4,8), International Mathematics Research Notices, Volume 2021 (2021) no. 23, p. 17971 | DOI:10.1093/imrn/rnz328
  • Katori, Makoto; Koshida, Shinji Three phases of multiple SLE driven by non-colliding Dyson’s Brownian motions, Journal of Physics A: Mathematical and Theoretical, Volume 54 (2021) no. 32, p. 325002 | DOI:10.1088/1751-8121/ac0dee
  • Qian, Wei Generalized disconnection exponents, Probability Theory and Related Fields, Volume 179 (2021) no. 1-2, p. 117 | DOI:10.1007/s00440-020-01005-5
  • Beffara, Vincent; Peltola, Eveliina; Wu, Hao On the uniqueness of global multiple SLEs, The Annals of Probability, Volume 49 (2021) no. 1 | DOI:10.1214/20-aop1477
  • Gwynne, Ewain; Pfeffer, Joshua External diffusion-limited aggregation on a spanning-tree-weighted random planar map, The Annals of Probability, Volume 49 (2021) no. 4 | DOI:10.1214/20-aop1486
  • Wu, Hao Hypergeometric SLE: Conformal Markov Characterization and Applications, Communications in Mathematical Physics, Volume 374 (2020) no. 2, p. 433 | DOI:10.1007/s00220-020-03697-1
  • Ang, Morris; Park, Minjae; Wang, Yilin Large deviations of radial SLE, Electronic Journal of Probability, Volume 25 (2020) no. none | DOI:10.1214/20-ejp502
  • Gwynne, Ewain; Holden, Nina; Miller, Jason Dimension transformation formula for conformal maps into the complement of an SLE curve, Probability Theory and Related Fields, Volume 176 (2020) no. 1-2, p. 649 | DOI:10.1007/s00440-019-00952-y
  • Aru, Juhan; Lupu, Titus; Sepúlveda, Avelio First passage sets of the 2D continuum Gaussian free field, Probability Theory and Related Fields, Volume 176 (2020) no. 3-4, p. 1303 | DOI:10.1007/s00440-019-00941-1
  • Schoug, Lukas A multifractal boundary spectrum for SLEκ(ρ), Probability Theory and Related Fields, Volume 178 (2020) no. 1-2, p. 173 | DOI:10.1007/s00440-020-00975-w
  • Gwynne, Ewain; Holden, Nina; Miller, Jason An almost sure KPZ relation for SLE and Brownian motion, The Annals of Probability, Volume 48 (2020) no. 2 | DOI:10.1214/19-aop1385
  • Gwynne, Ewain; Pfeffer, Joshua Connectivity properties of the adjacency graph of SLEκ bubbles for κ(4,8), The Annals of Probability, Volume 48 (2020) no. 3 | DOI:10.1214/19-aop1402
  • Gwynne, Ewain; Miller, Jason; Sheffield, Scott Harmonic functions on mated-CRT maps, Electronic Journal of Probability, Volume 24 (2019) no. none | DOI:10.1214/19-ejp325
  • Kenyon, Richard; Miller, Jason; Sheffield, Scott; Wilson, David B. Bipolar orientations on planar maps and SLE12, The Annals of Probability, Volume 47 (2019) no. 3 | DOI:10.1214/18-aop1282
  • Miller, Jason; Sheffield, Scott Gaussian free field light cones and SLEκ(ρ), The Annals of Probability, Volume 47 (2019) no. 6 | DOI:10.1214/18-aop1331
  • Miller, Jason Dimension of the SLE Light Cone, the SLE Fan, and SLEκ(ρ) SLE κ ( ρ ) for κ(0,4) κ ∈ ( 0 , 4 ) and ρ ρ ∈ [κ24,2) [ κ 2 - 4 , - 2 ), Communications in Mathematical Physics, Volume 360 (2018) no. 3, p. 1083 | DOI:10.1007/s00220-018-3109-9
  • Miller, Jason; Werner, Wendelin Connection Probabilities for Conformal Loop Ensembles, Communications in Mathematical Physics, Volume 362 (2018) no. 2, p. 415 | DOI:10.1007/s00220-018-3207-8
  • Gwynne, Ewain; Miller, Jason; Sun, Xin Almost sure multifractal spectrum of Schramm–Loewner evolution, Duke Mathematical Journal, Volume 167 (2018) no. 6 | DOI:10.1215/00127094-2017-0049
  • Gwynne, Ewain; Miller, Jason Chordal SLE6 explorations of a quantum disk, Electronic Journal of Probability, Volume 23 (2018) no. none | DOI:10.1214/18-ejp161
  • Wu, Hao Polychromatic Arm Exponents for the Critical Planar FK-Ising Model, Journal of Statistical Physics, Volume 170 (2018) no. 6, p. 1177 | DOI:10.1007/s10955-018-1983-3
  • Wu, Hao Alternating arm exponents for the critical planar Ising model, The Annals of Probability, Volume 46 (2018) no. 5 | DOI:10.1214/17-aop1241
  • Wu, Hao; Zhan, Dapeng Boundary arm exponents for SLE, Electronic Journal of Probability, Volume 22 (2017) no. none | DOI:10.1214/17-ejp110
  • MILLER, JASON; SHEFFIELD, SCOTT; WERNER, WENDELIN CLE PERCOLATIONS, Forum of Mathematics, Pi, Volume 5 (2017) | DOI:10.1017/fmp.2017.5
  • Miller, Jason; Wu, Hao Intersections of SLE Paths: the double and cut point dimension of SLE, Probability Theory and Related Fields, Volume 167 (2017) no. 1-2, p. 45 | DOI:10.1007/s00440-015-0677-x
  • Miller, Jason; Sheffield, Scott Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees, Probability Theory and Related Fields, Volume 169 (2017) no. 3-4, p. 729 | DOI:10.1007/s00440-017-0780-2
  • Wang, Menglu; Wu, Hao Level lines of Gaussian Free Field I: Zero-boundary GFF, Stochastic Processes and their Applications, Volume 127 (2017) no. 4, p. 1045 | DOI:10.1016/j.spa.2016.07.009
  • Benoist, Stéphane; Dubédat, Julien An SLE2 loop measure, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 52 (2016) no. 3 | DOI:10.1214/15-aihp681
  • Miller, Jason; Sheffield, Scott Imaginary geometry III: reversibility of _κfor κ∈(4,8), Annals of Mathematics, Volume 184 (2016) no. 2, p. 455 | DOI:10.4007/annals.2016.184.2.3
  • Kassel, Adrien; Wilson, David B. Active spanning trees and Schramm-Loewner evolution, Physical Review E, Volume 93 (2016) no. 6 | DOI:10.1103/physreve.93.062121
  • Miller, Jason; Sheffield, Scott Imaginary geometry I: interacting SLEs, Probability Theory and Related Fields, Volume 164 (2016) no. 3-4, p. 553 | DOI:10.1007/s00440-016-0698-0
  • Miller, Jason; Sheffield, Scott Imaginary geometry II: Reversibility of SLEκ(ρ1;ρ2) for κ(0,4), The Annals of Probability, Volume 44 (2016) no. 3 | DOI:10.1214/14-aop943
  • Dubédat, Julien SLE and Virasoro Representations: Localization, Communications in Mathematical Physics, Volume 336 (2015) no. 2, p. 695 | DOI:10.1007/s00220-014-2282-8
  • Dubédat, Julien SLE and Virasoro Representations: Fusion, Communications in Mathematical Physics, Volume 336 (2015) no. 2, p. 761 | DOI:10.1007/s00220-014-2283-7
  • Werner, Wendelin; Wu, Hao From CLE(κ) to SLE(κ,ρ)'s, Electronic Journal of Probability, Volume 18 (2013) no. none | DOI:10.1214/ejp.v18-2376
  • Sun, Nike Conformally invariant scaling limits in planar critical percolation, Probability Surveys, Volume 8 (2011) no. none | DOI:10.1214/11-ps180
  • Rohde*, Steffen Oded Schramm: From Circle Packing to SLE, Selected Works of Oded Schramm (2011), p. 3 | DOI:10.1007/978-1-4419-9675-6_1
  • Rohde, Steffen Oded Schramm: From circle packing to SLE, The Annals of Probability, Volume 39 (2011) no. 5 | DOI:10.1214/10-aop590
  • Zhan, Dapeng Duality of chordal SLE, II, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 46 (2010) no. 3 | DOI:10.1214/09-aihp340

Cité par 51 documents. Sources : Crossref