Soit un difféomorphisme d’une surface possédant deux fers à cheval tels que et aient en un point une tangence quadratique isolée. Nous montrons que, si la somme des dimensions transverses de et est strictement plus grande que 1, les difféomorphismes voisins de tels que et soient stablement tangents au voisinage de forment une partie de densité inférieure strictement positive en .
Let be a surface diffeomorphism with two horseshoes such that and have a quadratic tangency at a point . We show that, if the sum of the transverse dimension of and is larger than one, the set of diffeomorphisms close to such that and have a stable tangency near has positive density at .
Mot clés : bifurcation homocline, tangence homocline, fer à cheval, dimension fractale
Keywords: homoclinic bifurcation, homoclinic tangency, horseshoe, fractal dimension
@article{ASENS_2010_4_43_1_1_0, author = {Moreira, Carlos Gustavo and Yoccoz, Jean-Christophe}, title = {Tangences homoclines stables pour des ensembles hyperboliques de grande dimension fractale}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1--68}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {4e s{\'e}rie, 43}, number = {1}, year = {2010}, doi = {10.24033/asens.2115}, mrnumber = {2583264}, zbl = {1200.37020}, language = {fr}, url = {http://archive.numdam.org/articles/10.24033/asens.2115/} }
TY - JOUR AU - Moreira, Carlos Gustavo AU - Yoccoz, Jean-Christophe TI - Tangences homoclines stables pour des ensembles hyperboliques de grande dimension fractale JO - Annales scientifiques de l'École Normale Supérieure PY - 2010 SP - 1 EP - 68 VL - 43 IS - 1 PB - Société mathématique de France UR - http://archive.numdam.org/articles/10.24033/asens.2115/ DO - 10.24033/asens.2115 LA - fr ID - ASENS_2010_4_43_1_1_0 ER -
%0 Journal Article %A Moreira, Carlos Gustavo %A Yoccoz, Jean-Christophe %T Tangences homoclines stables pour des ensembles hyperboliques de grande dimension fractale %J Annales scientifiques de l'École Normale Supérieure %D 2010 %P 1-68 %V 43 %N 1 %I Société mathématique de France %U http://archive.numdam.org/articles/10.24033/asens.2115/ %R 10.24033/asens.2115 %G fr %F ASENS_2010_4_43_1_1_0
Moreira, Carlos Gustavo; Yoccoz, Jean-Christophe. Tangences homoclines stables pour des ensembles hyperboliques de grande dimension fractale. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 43 (2010) no. 1, pp. 1-68. doi : 10.24033/asens.2115. http://archive.numdam.org/articles/10.24033/asens.2115/
[1] On the sum and product of continued fractions, Ann. of Math. 48 (1947), 966-993. | MR | Zbl
,[2] Invariant manifolds, Lecture Notes in Math. 583, Springer, 1977. | MR | Zbl
, & ,[3] On Hausdorff dimension of projections, Mathematika 15 (1968), 153-155. | MR | Zbl
,[4] Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. London Math. Soc. 4 (1954), 257-302. | MR | Zbl
,[5] Stable intersections of Cantor sets and homoclinic bifurcations, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 741-781. | Numdam | MR | Zbl
,[6] Stable intersections of regular Cantor sets with large Hausdorff dimensions, Ann. of Math. 154 (2001), 45-96. | MR | Zbl
& ,[7] Nondensity of axiom on , in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., 1970, 191-202. | MR | Zbl
,[8] Hyperbolicity and the creation of homoclinic orbits, Ann. of Math. 125 (1987), 337-374. | MR | Zbl
& ,[9] Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Studies in Advanced Math. 35, Cambridge Univ. Press, 1993. | MR | Zbl
& ,[10] Homoclinic tangencies for hyperbolic sets of large Hausdorff dimension, Acta Math. 172 (1994), 91-136. | MR | Zbl
& ,[11] Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math. 151 (2000), 961-1023. | EuDML | MR | Zbl
& ,[12] Differentiable structures on fractal-like sets, determined by intrinsic scaling functions on dual Cantor sets, in The mathematical heritage of Hermann Weyl (Durham, NC, 1987), Proc. Sympos. Pure Math. 48, Amer. Math. Soc., 1988, 15-23. | MR | Zbl
,Cité par Sources :