Kinetic equations with Maxwell boundary conditions
[Équations cinétiques avec conditions aux limites de Maxwell]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 43 (2010) no. 5, pp. 719-760.

Nous montrons la stabilité des solutions renormalisées au sens de DiPerna-Lions pour des équations cinétiques avec conditions initiale et aux limites. La condition aux limites (qui peut être non linéaire) est partiellement diffuse et est réalisée (c'est-à-dire qu'elle n'est pas relaxée). Les techniques que nous introduisons sont illustrées sur l'équation de Fokker-Planck-Boltzmann et le système de Vlasov-Poisson-Fokker-Planck ainsi que pour des conditions aux limites linéaires sur l'équation de Boltzmann et le système de Vlasov-Poisson. Les démonstrations utilisent des théorèmes de trace du type de ceux introduits par l'auteur pour les équations de Vlasov, des résultats d'analyse fonctionnelle sur les convergences faible-faible (la convergence renormalisée et la convergence au sens du biting lemma), ainsi que l'information de Darrozès-Guiraud d'une manière essentielle.

We prove global stability results of DiPerna-Lions renormalized solutions for the initial boundary value problem associated to some kinetic equations, from which existence results classically follow. The (possibly nonlinear) boundary conditions are completely or partially diffuse, which includes the so-called Maxwell boundary conditions, and we prove that it is realized (it is not only a boundary inequality condition as it has been established in previous works). We are able to deal with Boltzmann, Vlasov-Poisson and Fokker-Planck type models. The proofs use some trace theorems of the kind previously introduced by the author for the Vlasov equations, new results concerning weak-weak convergence (the renormalized convergence and the biting L 1 -weak convergence), as well as the Darrozès-Guiraud information in a crucial way.

DOI : 10.24033/asens.2132
Classification : 76P05, 82B40, 82C40, 82D05
Keywords: Vlasov-Poisson, Boltzmann and Fokker-Planck equations, Maxwell or diffuse reflection, nonlinear gas-surface reflection laws, Darrozès-Guiraud information, trace theorems, renormalized convergence, biting lemma, Dunford-Pettis lemma
Mot clés : Équations de Vlasov-Poisson, Boltzmann et Fokker-Planck, réflexion de Maxwell ou diffuse, réflexion non linéaire, information de Darrozès-Guiraud, théorèmes de trace, convergence renormalisée, convergence au sens de Chacon (biting lemma), lemme de Dunford-Pettis
@article{ASENS_2010_4_43_5_719_0,
     author = {Mischler, St\'ephane},
     title = {Kinetic equations with {Maxwell} boundary conditions},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {719--760},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 43},
     number = {5},
     year = {2010},
     doi = {10.24033/asens.2132},
     mrnumber = {2721875},
     zbl = {1228.35249},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.2132/}
}
TY  - JOUR
AU  - Mischler, Stéphane
TI  - Kinetic equations with Maxwell boundary conditions
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2010
SP  - 719
EP  - 760
VL  - 43
IS  - 5
PB  - Société mathématique de France
UR  - http://archive.numdam.org/articles/10.24033/asens.2132/
DO  - 10.24033/asens.2132
LA  - en
ID  - ASENS_2010_4_43_5_719_0
ER  - 
%0 Journal Article
%A Mischler, Stéphane
%T Kinetic equations with Maxwell boundary conditions
%J Annales scientifiques de l'École Normale Supérieure
%D 2010
%P 719-760
%V 43
%N 5
%I Société mathématique de France
%U http://archive.numdam.org/articles/10.24033/asens.2132/
%R 10.24033/asens.2132
%G en
%F ASENS_2010_4_43_5_719_0
Mischler, Stéphane. Kinetic equations with Maxwell boundary conditions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 43 (2010) no. 5, pp. 719-760. doi : 10.24033/asens.2132. http://archive.numdam.org/articles/10.24033/asens.2132/

[1] N. B. Abdallah, Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system, Math. Methods Appl. Sci. 17 (1994), 451-476. | MR | Zbl

[2] E. Acerbi & N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal. 86 (1984), 125-145. | MR | Zbl

[3] V. I. Agoshkov, The existence of traces of functions in spaces used in problems of transport theory, Dokl. Akad. Nauk SSSR 288 (1986), 265-269. | MR | Zbl

[4] R. Alexandre, Weak solutions of the Vlasov-Poisson initial-boundary value problem, Math. Methods Appl. Sci. 16 (1993), 587-607. | MR | Zbl

[5] L. Arkeryd & C. Cercignani, A global existence theorem for the initial-boundary value problem for the Boltzmann equation when the boundaries are not isothermal, Arch. Rational Mech. Anal. 125 (1993), 271-287. | MR | Zbl

[6] L. Arkeryd & A. Heintz, On the solvability and asymptotics of the Boltzmann equation in irregular domains, Comm. Partial Differential Equations 22 (1997), 2129-2152. | MR | Zbl

[7] L. Arkeryd & N. Maslova, On diffuse reflection at the boundary for the Boltzmann equation and related equations, J. Statist. Phys. 77 (1994), 1051-1077. | MR | Zbl

[8] L. Arkeryd & A. Nouri, Boltzmann asymptotics with diffuse reflection boundary conditions, Monatsh. Math. 123 (1997), 285-298. | MR | Zbl

[9] J. M. Ball & F. Murat, Remarks on Chacon's biting lemma, Proc. Amer. Math. Soc. 107 (1989), 655-663. | MR | Zbl

[10] C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport, Ann. Sci. École Norm. Sup. 3 (1970), 185-233. | Numdam | MR | Zbl

[11] R. Beals & V. Protopopescu, Abstract time-dependent transport equations, J. Math. Anal. Appl. 121 (1987), 370-405. | MR | Zbl

[12] A. Bogdanov, V. Dubrovsky, M. Krutykov, D. Kulginov & V. Strelchenya, Interaction of gases with surfaces, Lecture Notes in Physics m25, Springer, 1995.

[13] L. L. Bonilla, J. A. Carrillo & J. Soler, Asymptotic behavior of an initial boundary value problem for the Vlasov-Poisson-Fokker-Planck system, J. Funct. Anal. 111 (1993), 239-258. | Zbl

[14] F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Funct. Anal. 111 (1993), 239-258. | MR | Zbl

[15] F. Bouchut, Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system, J. Differential Equations 122 (1995), 225-238. | MR | Zbl

[16] F. Bouchut & J. Dolbeault, On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials, Differential Integral Equations 8 (1995), 487-514. | MR | Zbl

[17] J. K. Brooks & R. V. Chacon, Continuity and compactness of measures, Adv. in Math. 37 (1980), 16-26. | MR | Zbl

[18] M. Cannone & C. Cercignani, A trace theorem in kinetic theory, Appl. Math. Lett. 4 (1991), 63-67. | MR | Zbl

[19] J. A. Carrillo, Global weak solutions for the initial-boundary-value problems to the Vlasov-Poisson-Fokker-Planck system, Math. Methods Appl. Sci. 21 (1998), 907-938. | MR | Zbl

[20] J. A. Carrillo & J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in L p spaces, Math. Methods Appl. Sci. 18 (1995), 825-839. | MR | Zbl

[21] J. A. Carrillo & J. Soler, On the Vlasov-Poisson-Fokker-Planck equations with measures in Morrey spaces as initial data, J. Math. Anal. Appl. 207 (1997), 475-495. | MR | Zbl

[22] J. A. Carrillo, J. Soler & J. L. Vázquez, Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system, J. Funct. Anal. 141 (1996), 99-132. | MR | Zbl

[23] F. Castella, The Vlasov-Poisson-Fokker-Planck system with infinite kinetic energy, Indiana Univ. Math. J. 47 (1998), 939-964. | MR | Zbl

[24] P. Cembranos & J. Mendoza, Banach spaces of vector-valued functions, Lecture Notes in Math. 1676, Springer, 1997. | MR | Zbl

[25] C. Cercignani, The Boltzmann equation and its applications, Applied Mathematical Sciences 67, Springer, 1988. | MR | Zbl

[26] C. Cercignani, Scattering kernels for gas/surface interaction, in Proceeding of the workshop on hypersonic flows for reentry problems, INRIA, 1990, 9-29. | Zbl

[27] C. Cercignani, On the initial-boundary value problem for the Boltzmann equation, Arch. Rational Mech. Anal. 116 (1992), 307-315. | MR | Zbl

[28] C. Cercignani, Initial-boundary value problems for the Boltzmann equation, in Proceedings of the Second International Workshop on Nonlinear Kinetic Theories and Mathematical Aspects of Hyperbolic Systems (Sanremo, 1994), 25, 1996, 425-436. | Zbl

[29] C. Cercignani, R. Illner & M. Pulvirenti, The mathematical theory of dilute gases, Applied Mathematical Sciences 106, Springer, 1994. | Zbl

[30] C. Cercignani, M. Lampis & A. Lentati, A new scattering kernel in kinetic theory of gases, Transport Theory Statist. Phys. 24 (1995), 1319-1336. | Zbl

[31] M. Cessenat, Théorèmes de trace L p pour des espaces de fonctions de la neutronique, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 831-834, 300 (1985), 89-92. | Zbl

[32] S. Chandresekhar, Stochastic problems in physics and astronomy, Rev. Modern Phys. 15 (1943), 1-89. | Zbl

[33] R. Coifman, P.-L. Lions, Y. Meyer & S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247-286. | Zbl

[34] J. S. Darrozès & J. P. Guiraud, Généralisation formelle du théorème H en présence de parois, C. R. Acad. Sci. Paris 262 (1966), 368-371.

[35] R. Diperna & P.-L. Lions, On the Fokker-Planck-Boltzmann equation, Comm. Math. Phys. 120 (1988), 1-23. | Zbl

[36] R. Diperna & P.-L. Lions, Solutions globales d'équations du type Vlasov-Poisson, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 655-658. | MR | Zbl

[37] R. Diperna & P.-L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. 130 (1989), 321-366. | MR | Zbl

[38] R. Diperna & P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), 511-547. | MR | Zbl

[39] R. Diperna & P.-L. Lions, Global solutions of Boltzmann's equation and the entropy inequality, Arch. Rational Mech. Anal. 114 (1991), 47-55. | MR | Zbl

[40] R. Diperna, P.-L. Lions & Y. Meyer, L p regularity of velocity averages, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 271-287. | Numdam | MR | Zbl

[41] V. F. Gaposhkin, Convergences and limit theorems for sequences of random variables, Theory of Probability App. 17 (1979), 379-400. | Zbl

[42] F. Golse, P.-L. Lions, B. Perthame & R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal. 76 (1988), 110-125. | MR | Zbl

[43] T. Goudon, Existence of solutions of transport equations with nonlinear boundary conditions, European J. Mech. B Fluids 16 (1997), 557-574. | MR | Zbl

[44] T. Goudon, Sur quelques questions relatives à la théorie cinétique des gaz et à l'équation de Boltzmann, thèse de doctorat, Université de Bordeaux, 1997.

[45] W. Greenberg, C. Van Der Mee & V. Protopopescu, Boundary value problems in abstract kinetic theory, Operator Theory: Advances and Applications 23, Birkhäuser, 1987. | MR | Zbl

[46] Y. Guo, Global weak solutions of the Vlasov-Maxwell system with boundary conditions, Comm. Math. Phys. 154 (1993), 245-263. | MR | Zbl

[47] K. Hamdache, Initial-boundary value problems for the Boltzmann equation: global existence of weak solutions, Arch. Rational Mech. Anal. 119 (1992), 309-353. | MR | Zbl

[48] A. Heintz, Boundary value problems for nonlinear Boltzmann equation in domains with irregular boundaries, Thèse, Leningrad State University, 1986.

[49] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. | MR | Zbl

[50] M. I. Kadec & A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces L p , Studia Math. 21 (1961/1962), 161-176. | MR | Zbl

[51] I. Kuščer, Phenomenological aspects of gas-surface interaction, in Fundamental problems in statistical mechanics, IV (Proc. Fourth Internat. Summer School, Jadwisin, 1977), Ossolineum, 1978, 439-467. | MR

[52] P.-L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications. I, II, III, J. Math. Kyoto Univ. 34 (1994), 391-427, 429-461, 539-584. | MR | Zbl

[53] P.-L. Lions, Conditions at infinity for Boltzmann's equation, Comm. Partial Differential Equations 19 (1994), 335-367. | MR | Zbl

[54] J. C. Maxwell, On stresses in rarefied gases arising from inequalities of temperature, Phil. Trans. Roy. Soc. London 170 (1879), Appendix 231-256. | JFM

[55] S. Mischler, On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys. 210 (2000), 447-466. | MR | Zbl

[56] S. Mischler, On the trace problem for solutions of the Vlasov equation, Comm. Partial Differential Equations 25 (2000), 1415-1443. | MR | Zbl

[57] R. Pettersson, On solutions to the linear Boltzmann equation with general boundary conditions and infinite-range forces, J. Statist. Phys. 59 (1990), 403-440. | MR | Zbl

[58] F. Poupaud, Boundary value problems for the stationary Vlasov-Poisson system, C. R. Acad. Sci. Paris 311 (1990), 307-312. | Zbl

[59] K. Rein & J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions, J. Differential Equations 99 (1992), 59-77. | MR | Zbl

[60] M. Saadoune & M. Valadier, Extraction of a “good” subsequence from a bounded sequence of integrable functions, J. Convex Anal. 2 (1995), 345-357. | MR | Zbl

[61] J. Soler, Asymptotic behaviour for the Vlasov-Poisson-Foker-Planck system, Nonlinear Anal. 30 (1997), 5217-5228. | MR | Zbl

[62] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton Univ. Press, 1970. | MR | Zbl

[63] L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math. 39, Pitman, 1979, 136-212. | MR | Zbl

[64] S. Ukai, Solutions of the Boltzmann equation, in Patterns and waves, Stud. Math. Appl. 18, North-Holland, 1986, 37-96. | MR | Zbl

[65] H. D. J. Victory & B. P. O'Dwyer, On classical solutions of Vlasov-Poisson-Fokker-Planck systems, Indiana Univ. Math. J. 39 (1990), 105-156. | MR | Zbl

[66] C. Villani, Contribution à l'étude mathématique des équations de Boltzmann et de Landau en théorie cinétique des gaz et des plasmas, thèse de doctorat, Université Paris Dauphine, 1998.

[67] J. Voigt, Functional analytic treatment of the initial boundary value problem for collisionless gases, Habilitationsschrift, Universität München, 1980.

[68] J. Weckler, On the initial-boundary-value problem for the Vlasov-Poisson system: existence of weak solutions and stability, Arch. Rational Mech. Anal. 130 (1995), 145-161. | MR | Zbl

[69] L. C. Young, Lectures on the calculus of variations and optimal control theory, W. B. Saunders Co., 1969. | MR | Zbl

Cité par Sources :