[Mesures harmoniques et mesures quasiconformes sur les groupes hyperboliques]
On établit une formule de la dimension de la mesure harmonique d'une marche aléatoire de loi de support fini et symétrique sur un groupe hyperbolique. On caractérise aussi les lois pour lesquelles la dimension est maximale. Notre approche repose sur la distance de Green, une distance qui permet de développer un point de vue géométrique sur les marches aléatoires et, en particulier, d'interpréter les mesures harmoniques comme des mesures quasiconformes.
We establish a dimension formula for the harmonic measure of a finitely supported and symmetric random walk on a hyperbolic group. We also characterize random walks for which this dimension is maximal. Our approach is based on the Green metric, a metric which provides a geometric point of view on random walks and, in particular, which allows us to interpret harmonic measures as quasiconformal measures on the boundary of the group.
Keywords: hyperbolic groups, random walks on groups, harmonic measures, quasiconformal measures, dimension of a measure, Martin boundary, brownian motion, Green metric
Mot clés : groupes hyperboliques, marches aléatoires sur les groupes, mesures harmoniques, mesures quasiconformes, dimension d'une mesure, bord de Martin, mouvement brownien, distance de Green
@article{ASENS_2011_4_44_4_683_0, author = {Blach\`ere, S\'ebastien and Ha{\"\i}ssinsky, Peter and Mathieu, Pierre}, title = {Harmonic measures versus quasiconformal measures for hyperbolic groups}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {683--721}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 44}, number = {4}, year = {2011}, doi = {10.24033/asens.2153}, mrnumber = {2919980}, zbl = {1243.60005}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2153/} }
TY - JOUR AU - Blachère, Sébastien AU - Haïssinsky, Peter AU - Mathieu, Pierre TI - Harmonic measures versus quasiconformal measures for hyperbolic groups JO - Annales scientifiques de l'École Normale Supérieure PY - 2011 SP - 683 EP - 721 VL - 44 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2153/ DO - 10.24033/asens.2153 LA - en ID - ASENS_2011_4_44_4_683_0 ER -
%0 Journal Article %A Blachère, Sébastien %A Haïssinsky, Peter %A Mathieu, Pierre %T Harmonic measures versus quasiconformal measures for hyperbolic groups %J Annales scientifiques de l'École Normale Supérieure %D 2011 %P 683-721 %V 44 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2153/ %R 10.24033/asens.2153 %G en %F ASENS_2011_4_44_4_683_0
Blachère, Sébastien; Haïssinsky, Peter; Mathieu, Pierre. Harmonic measures versus quasiconformal measures for hyperbolic groups. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 44 (2011) no. 4, pp. 683-721. doi : 10.24033/asens.2153. https://www.numdam.org/articles/10.24033/asens.2153/
[1] Positive harmonic functions and hyperbolicity, in Potential theory-surveys and problems (Prague, 1987), Lecture Notes in Math. 1344, Springer, 1988, 1-23. | MR | Zbl
,[2] Théorie du potentiel sur les graphes et les variétés, in École d'été de Probabilités de Saint-Flour XVIII-1988, Lecture Notes in Math. 1427, Springer, 1990, 1-112. | MR | Zbl
,[3] Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math. 121 (1985), 429-461. | MR | Zbl
& ,[4] On the Dirichlet problem at infinity for manifolds of nonpositive curvature, Forum Math. 1 (1989), 201-213. | MR | Zbl
,[5] Discretization of positive harmonic functions on Riemannian manifolds and Martin boundary, in Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sémin. Congr. 1, Soc. Math. France, 1996, 77-92. | MR | Zbl
& ,[6] Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geom. Funct. Anal. 5 (1995), 731-799. | MR | Zbl
, & ,[7] Central limit theorems for Gromov hyperbolic groups, J. Theoret. Probab. 23 (2010), 871-887. | MR | Zbl
,[8] Internal diffusion limited aggregation on discrete groups having exponential growth, Probab. Theory Related Fields 137 (2007), 323-343. | MR | Zbl
& ,[9] Asymptotic entropy and Green speed for random walks on countable groups, Ann. Probab. 36 (2008), 1134-1152. | MR | Zbl
, & ,[10] Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000), 266-306. | MR | Zbl
& ,[11] Quasi-conformal geometry and hyperbolic geometry, in Rigidity in dynamics and geometry (Cambridge, 2000), Springer, 2002, 1-17. | MR | Zbl
& ,[12] Markov maps associated with Fuchsian groups, Publ. Math. I.H.É.S. 50 (1979), 153-170. | Numdam | MR | Zbl
& ,[13] Harmonicity of quasiconformal measures and Poisson boundaries of hyperbolic spaces, Geom. Funct. Anal. 17 (2007), 707-769. | MR | Zbl
& ,[14] Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993), 241-270. | MR | Zbl
,[15] On the question of ergodicity for minimal group actions on the circle, Mosc. Math. J. 9 (2009), 263-303. | MR | Zbl
, & ,[16] The boundary theory of Markov processes (discrete case), Uspehi Mat. Nauk 24 (1969), 3-42. | MR | Zbl
,[17] Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Math. 83, Birkhäuser, 1990. | MR | Zbl
& (éds.),[18] Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire, in Conference on Random Walks (Kleebach, 1979), Astérisque 74, Soc. Math. France, 1980, 47-98. | Numdam | MR | Zbl
,[19] Sur l'enroulement du flot géodésique, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 645-648. | MR | Zbl
& ,[20] Asymptotic winding of the geodesic flow on modular surfaces and continued fractions, Ann. Sci. École Norm. Sup. 26 (1993), 23-50. | Numdam | MR | Zbl
& ,[21] Lectures on analysis on metric spaces, Universitext, Springer, 2001. | MR | Zbl
,[22] Markoff chains and Martin boundaries, Illinois J. Math. 4 (1960), 313-340. | MR | Zbl
,[23] Brownian motion and harmonic functions on covering manifolds. An entropic approach, Soviet Math. Dokl. 33 (1986), 812-816. | MR | Zbl
,[24] Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds, Hyperbolic behaviour of dynamical systems, Ann. Inst. H. Poincaré Phys. Théor. 53 (1990), 361-393. | Numdam | MR | Zbl
,[25] Discretization of bounded harmonic functions on Riemannian manifolds and entropy, in Potential theory (Nagoya, 1990), de Gruyter, 1992, 213-223. | MR | Zbl
,[26] Ergodicity of harmonic invariant measures for the geodesic flow on hyperbolic spaces, J. reine angew. Math. 455 (1994), 57-103. | MR | Zbl
,[27] Hausdorff dimension of the harmonic measure on trees, Ergodic Theory Dynam. Systems 18 (1998), 631-660. | MR | Zbl
,[28] The Poisson formula for groups with hyperbolic properties, Ann. of Math. 152 (2000), 659-692. | MR | Zbl
,[29] Boundaries of hyperbolic groups, in Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), Contemp. Math. 296, Amer. Math. Soc., 2002, 39-93. | MR | Zbl
& ,[30] Propriété de Liouville et vitesse de fuite du mouvement brownien, C. R. Math. Acad. Sci. Paris 344 (2007), 685-690. | MR | Zbl
& ,[31] Dimensional properties of the harmonic measure for a random walk on a hyperbolic group, Trans. Amer. Math. Soc. 359 (2007), 2881-2898. | MR | Zbl
,[32] A relation between dimension of the harmonic measure, entropy and drift for a random walk on a hyperbolic space, Electron. Commun. Probab. 13 (2008), 45-53. | MR | Zbl
,[33] Ergodic properties of Brownian motion on covers of compact negatively-curve manifolds, Bol. Soc. Brasil. Mat. 19 (1988), 115-140. | MR | Zbl
,[34] Harmonic measures and Bowen-Margulis measures, Israel J. Math. 71 (1990), 275-287. | MR | Zbl
,[35] Some asymptotic properties of random walks on free groups, in Topics in probability and Lie groups: boundary theory, CRM Proc. Lecture Notes 28, Amer. Math. Soc., 2001, 117-152. | MR | Zbl
,[36] Equivalence of boundary measures on covering trees of finite graphs, Ergodic Theory Dynam. Systems 14 (1994), 575-597. | MR | Zbl
,[37] Function theory, random paths and covering spaces, J. Differential Geom. 19 (1984), 299-323. | MR | Zbl
& ,[38] Random walks on free products of cyclic groups, J. Lond. Math. Soc. 75 (2007), 47-66. | MR | Zbl
& ,[39] Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier, Grenoble 7 (1957), 183-281. | Numdam | MR | Zbl
,[40] Stochastic Riemannian geometry, in Probabilistic analysis and related topics, Vol. 1, Academic Press, 1978, 199-236. | MR | Zbl
,[41] Étude asymptotique et convergence angulaire du mouvement brownien sur une variété à courbure négative, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), AA1539-A1542. | MR | Zbl
,[42] Gromov hyperbolic spaces, Expo. Math. 23 (2005), 187-231. | MR | Zbl
,[43] Dynamic theory of growth in groups: entropy, boundaries, examples, Russian Math. Surveys 55 (2000), 667-733. | MR | Zbl
,[44] Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics 138, Cambridge Univ. Press, 2000. | MR | Zbl
,[45] Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems 2 (1982), 109-124. | MR | Zbl
,- Riesz operators and some spherical representations for hyperbolic groups, Israel Journal of Mathematics (2025) | DOI:10.1007/s11856-025-2728-z
- Besov spaces and random walks on a hyperbolic group: boundary traces and reflecting extensions of Dirichlet forms, Annales Henri Lebesgue, Volume 7 (2024), p. 161 | DOI:10.5802/ahl.196
- Riesz operators and L-boundary representations for hyperbolic groups, Journal of Functional Analysis, Volume 287 (2024) no. 12, p. 110650 | DOI:10.1016/j.jfa.2024.110650
- Central limit theorem and geodesic tracking on hyperbolic spaces and Teichmüller spaces, Advances in Mathematics, Volume 431 (2023), p. 109236 | DOI:10.1016/j.aim.2023.109236
- Limit Set of Branching Random Walks on Hyperbolic Groups, Communications on Pure and Applied Mathematics, Volume 76 (2023) no. 10, p. 2765 | DOI:10.1002/cpa.22088
- Harmonic quasi-isometric maps III: quotients of Hadamard manifolds, Geometriae Dedicata, Volume 217 (2023) no. 3 | DOI:10.1007/s10711-023-00787-x
- Random walk speed is a proper function on Teichmüller space, Journal of Modern Dynamics, Volume 19 (2023) no. 0, p. 815 | DOI:10.3934/jmd.2023022
- The space of metric structures on hyperbolic groups, Journal of the London Mathematical Society, Volume 107 (2023) no. 3, p. 914 | DOI:10.1112/jlms.12703
- Groups, Drift and Harmonic Measures, Mathematics Going Forward, Volume 2313 (2023), p. 301 | DOI:10.1007/978-3-031-12244-6_21
- The Hausdorff dimension of the harmonic measure for relatively hyperbolic groups, Transactions of the American Mathematical Society, Series B, Volume 10 (2023) no. 23, p. 766 | DOI:10.1090/btran/145
- First passage percolation on hyperbolic groups, Advances in Mathematics, Volume 408 (2022), p. 108599 | DOI:10.1016/j.aim.2022.108599
- Potential Theory on Gromov Hyperbolic Spaces, Analysis and Geometry in Metric Spaces, Volume 10 (2022) no. 1, p. 394 | DOI:10.1515/agms-2022-0147
- Local limit theorems in relatively hyperbolic groups II: the non-spectrally degenerate case, Compositio Mathematica, Volume 158 (2022) no. 4, p. 764 | DOI:10.1112/s0010437x22007448
- The fundamental inequality for cocompact Fuchsian groups, Forum of Mathematics, Sigma, Volume 10 (2022) | DOI:10.1017/fms.2022.94
- Statistical Hyperbolicity for Harmonic Measure, International Mathematics Research Notices, Volume 2022 (2022) no. 8, p. 6289 | DOI:10.1093/imrn/rnaa277
- Quasi-Fuchsian vs negative curvature metrics on surface groups, Israel Journal of Mathematics, Volume 251 (2022) no. 1, p. 365 | DOI:10.1007/s11856-022-2440-1
- Stable random fields, Patterson–Sullivan measures and extremal cocycle growth, Probability Theory and Related Fields, Volume 183 (2022) no. 3-4, p. 681 | DOI:10.1007/s00440-022-01134-z
- Potential Theory on Gromov Hyperbolic Spaces, arXiv (2022) | DOI:10.48550/arxiv.2203.16447 | arXiv:2203.16447
- Topological flows for hyperbolic groups, Ergodic Theory and Dynamical Systems, Volume 41 (2021) no. 11, p. 3474 | DOI:10.1017/etds.2020.101
- The conformal measures of a normal subgroup of a cocompact Fuchsian group, Ergodic Theory and Dynamical Systems, Volume 41 (2021) no. 9, p. 2845 | DOI:10.1017/etds.2020.83
- Martin boundary covers Floyd boundary, Inventiones mathematicae, Volume 223 (2021) no. 2, p. 759 | DOI:10.1007/s00222-020-01015-z
- Cusp excursion in hyperbolic manifolds and singularity of harmonic measure, Journal of Modern Dynamics, Volume 17 (2021) no. 0, p. 183 | DOI:10.3934/jmd.2021006
- Some spherical functions on hyperbolic groups, Journal of Topology and Analysis, Volume 13 (2021) no. 04, p. 1125 | DOI:10.1142/s1793525320500429
- The Martin boundary of a free product of abelian groups, Annales de l'Institut Fourier, Volume 70 (2020) no. 1, p. 313 | DOI:10.5802/aif.3314
- Deviation inequalities for random walks, Duke Mathematical Journal, Volume 169 (2020) no. 5 | DOI:10.1215/00127094-2019-0067
- Entropy and drift for Gibbs measures on geometrically finite manifolds, Transactions of the American Mathematical Society, Volume 373 (2020) no. 4, p. 2949 | DOI:10.1090/tran/8036
- Dimension of harmonic measures in hyperbolic spaces, Ergodic Theory and Dynamical Systems, Volume 39 (2019) no. 2, p. 474 | DOI:10.1017/etds.2017.23
- Two applications of strong hyperbolicity, Kyoto Journal of Mathematics, Volume 59 (2019) no. 2 | DOI:10.1215/21562261-2019-0002
- Entropy and drift in word hyperbolic groups, Inventiones mathematicae, Volume 211 (2018) no. 3, p. 1201 | DOI:10.1007/s00222-018-0788-y
- Random walks on weakly hyperbolic groups, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2018 (2018) no. 742, p. 187 | DOI:10.1515/crelle-2015-0076
- Counting loxodromics for hyperbolic actions, Journal of Topology, Volume 11 (2018) no. 2, p. 379 | DOI:10.1112/topo.12053
- Decrease of Fourier coefficients of stationary measures, Mathematische Annalen, Volume 372 (2018) no. 3-4, p. 1189 | DOI:10.1007/s00208-018-1743-3
- Hausdorff spectrum of harmonic measure, Ergodic Theory and Dynamical Systems, Volume 37 (2017) no. 1, p. 277 | DOI:10.1017/etds.2015.48
- Tracking rates of random walks, Israel Journal of Mathematics, Volume 220 (2017) no. 1, p. 1 | DOI:10.1007/s11856-017-1508-9
- Random methods in 3-manifold theory, Proceedings of the Steklov Institute of Mathematics, Volume 292 (2016) no. 1, p. 118 | DOI:10.1134/s0081543816010089
- Groups with minimal harmonic functions as small as you like (With an appendix by Nicolas Matte Bon), arXiv (2016) | DOI:10.48550/arxiv.1605.07593 | arXiv:1605.07593
- Differentiating the entropy of random walks on hyperbolic groups, The Annals of Probability, Volume 43 (2015) no. 1 | DOI:10.1214/13-aop901
- Martin boundary of random walks with unbounded jumps in hyperbolic groups, The Annals of Probability, Volume 43 (2015) no. 5 | DOI:10.1214/14-aop938
- Proper isometric actions of hyperbolic groups on -spaces, Compositio Mathematica, Volume 149 (2013) no. 5, p. 773 | DOI:10.1112/s0010437x12000693
- On the limit set of a geometrically infinite Kleinian group, arXiv (2012) | DOI:10.48550/arxiv.1209.3919 | arXiv:1209.3919
- Exponential decay in the mapping class group, arXiv (2011) | DOI:10.48550/arxiv.1104.5543 | arXiv:1104.5543
- The ergodic theory of hyperbolic groups, arXiv (2011) | DOI:10.48550/arxiv.1111.0029 | arXiv:1111.0029
- Asymptotic Traffic Flow in a Hyperbolic Network: Definition and Properties of the Core, arXiv (2010) | DOI:10.48550/arxiv.1010.3304 | arXiv:1010.3304
- Asymptotic Traffic Flow in a Hyperbolic Network: Non-uniform Traffic, arXiv (2010) | DOI:10.48550/arxiv.1010.3305 | arXiv:1010.3305
Cité par 44 documents. Sources : Crossref, NASA ADS