[Lieux de bifurcation maximale de dimension de Hausdorff totale]
Dans l’espace des modules
In the moduli space
Keywords: complex dynamics, bifurcations, pluripotential theory, Hausdorff dimension
Mot clés : dynamique holomorphe, bifurcations, théorie du pluripotentiel, dimension de Hausdorff
@article{ASENS_2012_4_45_6_947_0, author = {Gauthier, Thomas}, title = {Strong bifurcation loci of full {Hausdorff} dimension}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {947--984}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 45}, number = {6}, year = {2012}, doi = {10.24033/asens.2181}, mrnumber = {3075109}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2181/} }
TY - JOUR AU - Gauthier, Thomas TI - Strong bifurcation loci of full Hausdorff dimension JO - Annales scientifiques de l'École Normale Supérieure PY - 2012 SP - 947 EP - 984 VL - 45 IS - 6 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2181/ DO - 10.24033/asens.2181 LA - en ID - ASENS_2012_4_45_6_947_0 ER -
%0 Journal Article %A Gauthier, Thomas %T Strong bifurcation loci of full Hausdorff dimension %J Annales scientifiques de l'École Normale Supérieure %D 2012 %P 947-984 %V 45 %N 6 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2181/ %R 10.24033/asens.2181 %G en %F ASENS_2012_4_45_6_947_0
Gauthier, Thomas. Strong bifurcation loci of full Hausdorff dimension. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 45 (2012) no. 6, pp. 947-984. doi : 10.24033/asens.2181. https://www.numdam.org/articles/10.24033/asens.2181/
[1] Rational Misiurewicz maps are rare, Comm. Math. Phys. 291 (2009), 645-658. | MR | Zbl
,[2] Dimension and measure for semi-hyperbolic rational maps of degree 2, C. R. Math. Acad. Sci. Paris 347 (2009), 395-400. | MR | Zbl
& ,
[3] Bifurcation currents in holomorphic dynamics on
[4] Lyapunov exponents, bifurcation currents and laminations in bifurcation loci, Math. Ann. 345 (2009), 1-23. | MR | Zbl
& ,[5] Distribution of polynomials with cycles of a given multiplier, Nagoya Math. J. 201 (2011), 23-43. | MR | Zbl
& ,[6] The Dirichlet problem for a complex Monge-Ampere equation, Bull. Amer. Math. Soc. 82 (1976), 102-104. | MR | Zbl
& ,[7] Holomorphic families of injections, Acta Math. 157 (1986), 259-286. | MR | Zbl
& ,[8] Normalization of bundle holomorphic contractions and applications to dynamics, Ann. Inst. Fourier (Grenoble) 58 (2008), 2137-2168. | Numdam | MR | Zbl
, & ,[9] Rudiments de dynamique holomorphe, Cours Spécialisés 7, Soc. Math. France, 2001. | MR | Zbl
& ,[10] The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math. 160 (1988), 143-206. | MR | Zbl
& ,[11] Bifurcation measure and postcritically finite rational maps, in Complex dynamics : families and friends / edited by Dierk Schleicher, A K Peters, Ltd., 2009, 491-512. | MR | Zbl
& ,[12] Complex analytic sets, Mathematics and its Applications (Soviet Series) 46, Kluwer Academic Publishers Group, 1989. | MR | Zbl
,[13] Dynamics of rational maps: a current on the bifurcation locus, Math. Res. Lett. 8 (2001), 57-66. | MR | Zbl
,[14] Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann. 326 (2003), 43-73. | MR | Zbl
,[15] Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings, in Holomorphic dynamical systems, Lecture Notes in Math. 1998, Springer, 2010, 165-294. | MR | Zbl
& ,[16] Approximation des fonctions lisses sur certaines laminations, Indiana Univ. Math. J. 55 (2006), 579-592. | MR | Zbl
,[17] Cubic polynomials: a measurable view on parameter space, in Complex dynamics : families and friends / edited by Dierk Schleicher, A K Peters, Ltd., 2009, 451-490. | MR | Zbl
,[18] Distribution of rational maps with a preperiodic critical point, Amer. J. Math. 130 (2008), 979-1032. | MR | Zbl
& ,[19] On the dynamics of rational maps, Ann. Sci. École Norm. Sup. 16 (1983), 193-217. | Numdam | MR | Zbl
, & ,[20] Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Math. 44, Cambridge Univ. Press, 1995. | MR | Zbl
,[21] Complex dynamics and renormalization, Annals of Math. Studies 135, Princeton Univ. Press, 1994. | MR | Zbl
,[22] Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps, Comment. Math. Helv. 75 (2000), 535-593. | MR | Zbl
,[23] The Mandelbrot set is universal, in The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser. 274, Cambridge Univ. Press, 2000, 1-17. | MR | Zbl
,[24] Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system, Adv. Math. 135 (1998), 351-395. | MR | Zbl
& ,[25] One-dimensional dynamics, Ergebn. Math. Grenzg. 25, Springer, 1993. | MR | Zbl
& ,[26] On Lattès maps, in Dynamics on the Riemann sphere, Eur. Math. Soc., Zürich, 2006, 9-43. | MR | Zbl
,[27] On the continuity of Hausdorff dimension of Julia sets and similarity between the Mandelbrot set and Julia sets, Fund. Math. 170 (2001), 287-317. | MR | Zbl
,[28] Real and complex analysis, third éd., McGraw-Hill Book Co., 1987. | MR | Zbl
,[29] The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. of Math. 147 (1998), 225-267. | MR | Zbl
,[30] An alternative proof of Mañé's theorem on non-expanding Julia sets, in The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser. 274, Cambridge Univ. Press, 2000, 265-279. | MR | Zbl
& ,
[31] Dynamique des applications rationnelles de
[32] The arithmetic of dynamical systems, Graduate Texts in Math. 241, Springer, 2007. | MR | Zbl
,[33] Misiurewicz maps unfold generically (even if they are critically non-finite), Fund. Math. 163 (2000), 39-54. | MR | Zbl
,[34] Hausdorff dimension of subsets of the parameter space for families of rational maps. (A generalization of Shishikura's result), Nonlinearity 11 (1998), 233-246. | MR | Zbl
,[35] Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems 14 (1994), 391-414. | MR | Zbl
,- Dynamical pairs with an absolutely continuous bifurcation measure, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 32 (2023) no. 2, p. 203 | DOI:10.5802/afst.1735
- Higher bifurcations for polynomial skew products, Journal of Modern Dynamics, Volume 18 (2022) no. 0, p. 69 | DOI:10.3934/jmd.2022003
- Stable Components in the Parameter Plane of Transcendental Functions Of Finite Type, The Journal of Geometric Analysis, Volume 31 (2021) no. 5, p. 4816 | DOI:10.1007/s12220-020-00458-3
- The bifurcation measure has maximal entropy, Israel Journal of Mathematics, Volume 235 (2020) no. 1, p. 213 | DOI:10.1007/s11856-019-1955-6
- Collet, Eckmann and the bifurcation measure, Inventiones mathematicae, Volume 217 (2019) no. 3, p. 749 | DOI:10.1007/s00222-019-00874-5
- Dynamical moduli spaces and elliptic curves, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 27 (2018) no. 2, p. 389 | DOI:10.5802/afst.1573
- Perturbations d'exemples de Lattès et dimension de Hausdorff du lieu de bifurcation, Journal de Mathématiques Pures et Appliquées, Volume 116 (2018), p. 161 | DOI:10.1016/j.matpur.2017.11.009
- Distribution of postcritically finite polynomials II: Speed of convergence, Journal of Modern Dynamics, Volume 11 (2017) no. 03, p. 57 | DOI:10.3934/jmd.2017.11.57
- Distribution of postcritically finite polynomials Ⅱ: Speed of convergence, Journal of Modern Dynamics, Volume 11 (2017) no. 1, p. 57 | DOI:10.3934/jmd.2017004
- Classification of Special Curves in the Space of Cubic Polynomials, International Mathematics Research Notices (2016), p. rnw245 | DOI:10.1093/imrn/rnw245
- Distribution of postcritically finite polynomials, Israel Journal of Mathematics, Volume 209 (2015) no. 1, p. 235 | DOI:10.1007/s11856-015-1218-0
- Bifurcation Currents in Holomorphic Families of Rational Maps, Pluripotential Theory, Volume 2075 (2013), p. 1 | DOI:10.1007/978-3-642-36421-1_1
- Random walks, Kleinian groups, and bifurcation currents, Inventiones mathematicae, Volume 190 (2012) no. 1, pp. 57-118 | DOI:10.1007/s00222-012-0376-5
- The supports of higher bifurcation currents, arXiv (2012) | DOI:10.48550/arxiv.1202.3249 | arXiv:1202.3249
- Bifurcation currents and equidistribution on parameter space, arXiv (2011) | DOI:10.48550/arxiv.1111.3989 | arXiv:1111.3989
- Perturbations of flexible Lattès maps, arXiv (2011) | DOI:10.48550/arxiv.1111.5451 | arXiv:1111.5451
- Perturbations of weakly expanding critical orbits, arXiv (2011) | DOI:10.48550/arxiv.1111.6270 | arXiv:1111.6270
- Random walks, Kleinian groups, and bifurcation currents, arXiv (2010) | DOI:10.48550/arxiv.1011.1365 | arXiv:1011.1365
Cité par 18 documents. Sources : Crossref, NASA ADS