[Sur la jauge conforme d'un espace métrique compact]
Dans cet article, on étudie la jauge conforme Ahlfors régulière d’un espace métrique compact et sa dimension conforme
In this article we study the Ahlfors regular conformal gauge of a compact metric space
Keywords: Ahlfors regular, conformal gauge, conformal dimension, combinatorial modulus, Gromov-hyperbolic
Mot clés : Ahlfors régulier, jauge conforme, dimension conforme, module combinatoire, Gromov-hyperbolique
@article{ASENS_2013_4_46_3_495_0, author = {Carrasco Piaggio, Matias}, title = {On the conformal gauge of a compact metric space}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {495--548}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 46}, number = {3}, year = {2013}, doi = {10.24033/asens.2195}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2195/} }
TY - JOUR AU - Carrasco Piaggio, Matias TI - On the conformal gauge of a compact metric space JO - Annales scientifiques de l'École Normale Supérieure PY - 2013 SP - 495 EP - 548 VL - 46 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2195/ DO - 10.24033/asens.2195 LA - en ID - ASENS_2013_4_46_3_495_0 ER -
%0 Journal Article %A Carrasco Piaggio, Matias %T On the conformal gauge of a compact metric space %J Annales scientifiques de l'École Normale Supérieure %D 2013 %P 495-548 %V 46 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2195/ %R 10.24033/asens.2195 %G en %F ASENS_2013_4_46_3_495_0
Carrasco Piaggio, Matias. On the conformal gauge of a compact metric space. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 46 (2013) no. 3, pp. 495-548. doi : 10.24033/asens.2195. https://www.numdam.org/articles/10.24033/asens.2195/
[1] Conformal invariants: topics in geometric function theory, McGraw-Hill Book Co., 1973. | MR
,[2] Quasiconformal geometry of fractals, in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, 1349-1373. | MR
,[3] Uniformizing Gromov hyperbolic spaces, Astérisque 270 (2001). | Numdam | MR
, & ,[4] Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002), 127-183. | MR
& ,[5] Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol. 9 (2005), 219-246. | MR
& ,[6] Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups, Groups Geom. Dyn. 7 (2013), 39-107. | MR
& ,
[7] Some applications of
[8] Cohomologie
[9] The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), 155-234. | MR
,[10] Jauge conforme des espaces métriques compacts, Thèse, Université Aix-Marseille, 2011.
,[11] Conformal dimension and canonical splittings of hyperbolic groups, preprint arXiv:1301.6492.
,
[12] A
[13] Géométrie et théorie des groupes, Lecture Notes in Math. 1441, Springer, 1990. | MR
, & ,[14] Fractured fractals and broken dreams, Oxford Lecture Series in Mathematics and its Applications 7, The Clarendon Press Oxford Univ. Press, 1997. | MR
& ,
[15] The
[16] Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Math. 83, Birkhäuser, 1990. | MR
& (éds.),[17] Empilements de cercles et modules combinatoires, Ann. Inst. Fourier (Grenoble) 59 (2009), 2175-2222. | Numdam | MR
,[18] Géométrie quasiconforme, analyse au bord des espaces métriques hyperboliques et rigidités, d'après Mostow, Pansu, Bourdon, Pajot, Bonk, Kleiner, Séminaire Bourbaki, vol. 2007/08, exp. no 993, Astérisque 326 (2009), 321-362. | Numdam | MR
,[19] Thurston obstructions and Ahlfors regular conformal dimension, J. Math. Pures Appl. 90 (2008), 229-241. | MR
& ,[20] Coarse expanding conformal dynamics, Astérisque 325 (2009). | Numdam | MR
& ,[21] Lectures on analysis on metric spaces, Universitext, Springer, 2001. | MR
,[22] Conformal Assouad dimension and modulus, Geom. Funct. Anal. 14 (2004), 1278-1321. | MR
& ,[23] The asymptotic geometry of negatively curved spaces: uniformization, geometrization and rigidity, in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, 743-768. | MR
,[24] Conformal dimension does not assume values between zero and one, Duke Math. J. 134 (2006), 1-13. | MR
,[25] Dimensions conformes, espaces Gromov-hyperboliques et ensembles autosimilaires, in Séminaire de Théorie Spectrale et Géométrie. Vol. 22. Année 2003-2004, Sémin. Théor. Spectr. Géom. 22, Univ. Grenoble I, 2004, 153-182. | Numdam | MR
& ,[26] Conformal dimension; theory and application, University Lecture Series 54, Amer. Math. Soc., 2010. | MR
& ,[27] Dimension conforme et sphère à l'infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 177-212. | MR
,[28] Metric spaces and mappings seen at many scales, in Metric structures for Riemannian and Non-Riemmannian spaces (M. Gromov, éd.), Birkhäuser, 2001.
,[29] Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), 97-114. | MR
& ,[30] Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math. 23 (1998), 525-548. | MR
,[31] On measures with the doubling condition, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 666-675; English translation: Math. USSR-Izv. 30 (1988), 629-638. | MR
& ,[32] Hausdorff dimension and doubling measures on metric spaces, Proc. Amer. Math. Soc. 126 (1998), 1453-1459. | MR
,- First‐order Sobolev spaces, self‐similar energies and energy measures on the Sierpiński carpet, Communications on Pure and Applied Mathematics (2025) | DOI:10.1002/cpa.22247
- Riesz operators and some spherical representations for hyperbolic groups, Israel Journal of Mathematics (2025) | DOI:10.1007/s11856-025-2728-z
- Construction of a Dirichlet form on Metric Measure Spaces of Controlled Geometry, Potential Analysis, Volume 62 (2025) no. 3, p. 485 | DOI:10.1007/s11118-024-10144-6
- Some Inequalities Between Ahlfors Regular Conformal Dimension And Spectral Dimensions For Resistance Forms, Potential Analysis, Volume 61 (2024) no. 2, p. 347 | DOI:10.1007/s11118-023-10112-6
- On the conformal walk dimension: quasisymmetric uniformization for symmetric diffusions, Inventiones mathematicae, Volume 231 (2023) no. 1, p. 263 | DOI:10.1007/s00222-022-01148-3
- Construction of 𝑝-energy and associated energy measures on Sierpiński carpets, Transactions of the American Mathematical Society, Volume 377 (2023) no. 2, p. 951 | DOI:10.1090/tran/9036
- Conformal dimension of hyperbolic groups that split over elementary subgroups, Inventiones mathematicae, Volume 227 (2022) no. 2, p. 795 | DOI:10.1007/s00222-021-01074-w
- Introduction and a Showcase, Geometry and Analysis of Metric Spaces via Weighted Partitions, Volume 2265 (2020), p. 1 | DOI:10.1007/978-3-030-54154-5_1
- Characterization of Ahlfors Regular Conformal Dimension, Geometry and Analysis of Metric Spaces via Weighted Partitions, Volume 2265 (2020), p. 97 | DOI:10.1007/978-3-030-54154-5_4
- Conformal dimension on boundary of right-angled hyperbolic buildings, Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, p. 819 | DOI:10.1016/j.crma.2017.06.006
- Iterated function system quasiarcs, Conformal Geometry and Dynamics of the American Mathematical Society, Volume 21 (2017) no. 3, p. 78 | DOI:10.1090/ecgd/305
- Conformal dimension and boundaries of planar domains, Transactions of the American Mathematical Society, Volume 369 (2017) no. 9, p. 6511 | DOI:10.1090/tran/6944
- Boundaries of Kleinian groups, Illinois Journal of Mathematics, Volume 60 (2016) no. 1 | DOI:10.1215/ijm/1498032035
- Conformal dimension via subcomplexes for small cancellation and random groups, Mathematische Annalen, Volume 364 (2016) no. 3-4, p. 937 | DOI:10.1007/s00208-015-1234-8
- Hyperbolic groups with planar boundaries, Inventiones mathematicae, Volume 201 (2015) no. 1, p. 239 | DOI:10.1007/s00222-014-0552-x
- Propriétés combinatoires du bord d’un groupe hyperbolique, Séminaire de théorie spectrale et géométrie, Volume 32 (2015), p. 73 | DOI:10.5802/tsg.304
- Conformal dimension and canonical splittings of hyperbolic groups, Geometric and Functional Analysis, Volume 24 (2014) no. 3, p. 922 | DOI:10.1007/s00039-014-0282-7
Cité par 17 documents. Sources : Crossref