On the conformal gauge of a compact metric space
[Sur la jauge conforme d'un espace métrique compact]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 46 (2013) no. 3, pp. 495-548.

Dans cet article, on étudie la jauge conforme Ahlfors régulière d’un espace métrique compact et sa dimension conforme dim AR (X,d). À l’aide d’une suite de recouvrements finis de (X,d), on construit des distances dans sa jauge Ahlfors régulière de dimension de Hausdorff contrôlée. On obtient ainsi une description combinatoire, à homéomorphismes bi-Lipschitz près, de toutes les métriques dans la jauge. On montre comment calculer dim AR X à partir de modules combinatoires en considérant un exposant critique Q N .

In this article we study the Ahlfors regular conformal gauge of a compact metric space (X,d), and its conformal dimension dim AR (X,d). Using a sequence of finite coverings of (X,d), we construct distances in its Ahlfors regular conformal gauge of controlled Hausdorff dimension. We obtain in this way a combinatorial description, up to bi-Lipschitz homeomorphisms, of all the metrics in the gauge. We show how to compute dim AR (X,d) using the critical exponent Q N associated to the combinatorial modulus.

DOI : 10.24033/asens.2195
Classification : 30L10, 51F99, 20F67, 30C65, 28A78
Keywords: Ahlfors regular, conformal gauge, conformal dimension, combinatorial modulus, Gromov-hyperbolic
Mot clés : Ahlfors régulier, jauge conforme, dimension conforme, module combinatoire, Gromov-hyperbolique
@article{ASENS_2013_4_46_3_495_0,
     author = {Carrasco Piaggio, Matias},
     title = {On the conformal gauge of a compact metric space},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {495--548},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 46},
     number = {3},
     year = {2013},
     doi = {10.24033/asens.2195},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.2195/}
}
TY  - JOUR
AU  - Carrasco Piaggio, Matias
TI  - On the conformal gauge of a compact metric space
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2013
SP  - 495
EP  - 548
VL  - 46
IS  - 3
PB  - Société mathématique de France
UR  - http://archive.numdam.org/articles/10.24033/asens.2195/
DO  - 10.24033/asens.2195
LA  - en
ID  - ASENS_2013_4_46_3_495_0
ER  - 
%0 Journal Article
%A Carrasco Piaggio, Matias
%T On the conformal gauge of a compact metric space
%J Annales scientifiques de l'École Normale Supérieure
%D 2013
%P 495-548
%V 46
%N 3
%I Société mathématique de France
%U http://archive.numdam.org/articles/10.24033/asens.2195/
%R 10.24033/asens.2195
%G en
%F ASENS_2013_4_46_3_495_0
Carrasco Piaggio, Matias. On the conformal gauge of a compact metric space. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 46 (2013) no. 3, pp. 495-548. doi : 10.24033/asens.2195. http://archive.numdam.org/articles/10.24033/asens.2195/

[1] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Book Co., 1973. | MR

[2] M. Bonk, Quasiconformal geometry of fractals, in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, 1349-1373. | MR

[3] M. Bonk, J. Heinonen & P. Koskela, Uniformizing Gromov hyperbolic spaces, Astérisque 270 (2001). | MR

[4] M. Bonk & B. Kleiner, Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002), 127-183. | MR

[5] M. Bonk & B. Kleiner, Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol. 9 (2005), 219-246. | MR

[6] M. Bourdon & B. Kleiner, Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups, Groups Geom. Dyn. 7 (2013), 39-107. | MR

[7] M. Bourdon & B. Kleiner, Some applications of p -cohomology to boundaries of Gromov hyperbolic spaces, preprint arXiv:1203.1233.

[8] M. Bourdon & H. Pajot, Cohomologie p et espaces de Besov, J. reine angew. Math. 558 (2003), 85-108. | MR

[9] J. W. Cannon, The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), 155-234. | MR

[10] M. Carrasco Piaggio, Jauge conforme des espaces métriques compacts, Thèse, Université Aix-Marseille, 2011.

[11] M. Carrasco Piaggio, Conformal dimension and canonical splittings of hyperbolic groups, preprint arXiv:1301.6492.

[12] M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), 601-628. | MR

[13] M. Coornaert, T. Delzant & A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Math. 1441, Springer, 1990. | MR

[14] G. David & S. Semmes, Fractured fractals and broken dreams, Oxford Lecture Series in Mathematics and its Applications 7, The Clarendon Press Oxford Univ. Press, 1997. | MR

[15] G. Elek, The l p -cohomology and the conformal dimension of hyperbolic cones, Geom. Dedicata 68 (1997), 263-279. | MR

[16] É. Ghys & P. De La Harpe (éds.), Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Math. 83, Birkhäuser, 1990. | MR

[17] P. Haïssinsky, Empilements de cercles et modules combinatoires, Ann. Inst. Fourier (Grenoble) 59 (2009), 2175-2222. | Numdam | MR

[18] P. Haïssinsky, Géométrie quasiconforme, analyse au bord des espaces métriques hyperboliques et rigidités, d'après Mostow, Pansu, Bourdon, Pajot, Bonk, Kleiner, Séminaire Bourbaki, vol. 2007/08, exp. no 993, Astérisque 326 (2009), 321-362. | Numdam | MR

[19] P. Haïssinsky & K. M. Pilgrim, Thurston obstructions and Ahlfors regular conformal dimension, J. Math. Pures Appl. 90 (2008), 229-241. | MR

[20] P. Haïssinsky & K. M. Pilgrim, Coarse expanding conformal dynamics, Astérisque 325 (2009). | Numdam | MR

[21] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer, 2001. | MR

[22] S. Keith & T. Laakso, Conformal Assouad dimension and modulus, Geom. Funct. Anal. 14 (2004), 1278-1321. | MR

[23] B. Kleiner, The asymptotic geometry of negatively curved spaces: uniformization, geometrization and rigidity, in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, 743-768. | MR

[24] L. V. Kovalev, Conformal dimension does not assume values between zero and one, Duke Math. J. 134 (2006), 1-13. | MR

[25] G. Lupo-Krebs & H. Pajot, Dimensions conformes, espaces Gromov-hyperboliques et ensembles autosimilaires, in Séminaire de Théorie Spectrale et Géométrie. Vol. 22. Année 2003-2004, Sémin. Théor. Spectr. Géom. 22, Univ. Grenoble I, 2004, 153-182. | Numdam | MR

[26] J. M. Mackay & J. T. Tyson, Conformal dimension; theory and application, University Lecture Series 54, Amer. Math. Soc., 2010. | MR

[27] P. Pansu, Dimension conforme et sphère à l'infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 177-212. | MR

[28] S. Semmes, Metric spaces and mappings seen at many scales, in Metric structures for Riemannian and Non-Riemmannian spaces (M. Gromov, éd.), Birkhäuser, 2001.

[29] P. Tukia & J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), 97-114. | MR

[30] J. Tyson, Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math. 23 (1998), 525-548. | MR

[31] A. L. VolʼBerg & S. V. Konyagin, On measures with the doubling condition, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 666-675; English translation: Math. USSR-Izv. 30 (1988), 629-638. | MR

[32] J.-M. Wu, Hausdorff dimension and doubling measures on metric spaces, Proc. Amer. Math. Soc. 126 (1998), 1453-1459. | MR

Cité par Sources :