[Les fractions continues automatiques sont transcendantes ou quadratiques]
Nous établissons de nouveaux critères combinatoires de transcendance pour des développements en fraction continue. Soit un nombre algébrique de degré au moins égal à trois. L’un de nos critères entraîne que la suite des quotients partiels de n’est pas trop simple (en un certain sens) et ne peut pas être engendrée par un automate fini.
We establish new combinatorial transcendence criteria for continued fraction expansions. Let be an algebraic number of degree at least three. One of our criteria implies that the sequence of partial quotients of is not ‘too simple’ (in a suitable sense) and cannot be generated by a finite automaton.
Keywords: continued fractions, transcendence
Mot clés : fractions continues, transcendance
@article{ASENS_2013_4_46_6_1005_0, author = {Bugeaud, Yann}, title = {Automatic continued fractions are transcendental or quadratic}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1005--1022}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 46}, number = {6}, year = {2013}, doi = {10.24033/asens.2208}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2208/} }
TY - JOUR AU - Bugeaud, Yann TI - Automatic continued fractions are transcendental or quadratic JO - Annales scientifiques de l'École Normale Supérieure PY - 2013 SP - 1005 EP - 1022 VL - 46 IS - 6 PB - Société mathématique de France UR - http://archive.numdam.org/articles/10.24033/asens.2208/ DO - 10.24033/asens.2208 LA - en ID - ASENS_2013_4_46_6_1005_0 ER -
%0 Journal Article %A Bugeaud, Yann %T Automatic continued fractions are transcendental or quadratic %J Annales scientifiques de l'École Normale Supérieure %D 2013 %P 1005-1022 %V 46 %N 6 %I Société mathématique de France %U http://archive.numdam.org/articles/10.24033/asens.2208/ %R 10.24033/asens.2208 %G en %F ASENS_2013_4_46_6_1005_0
Bugeaud, Yann. Automatic continued fractions are transcendental or quadratic. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 46 (2013) no. 6, pp. 1005-1022. doi : 10.24033/asens.2208. http://archive.numdam.org/articles/10.24033/asens.2208/
[1] On the complexity of algebraic numbers. II. Continued fractions, Acta Math. 195 (2005), 1-20. | MR
& ,[2] Real and -adic expansions involving symmetric patterns, Int. Math. Res. Not. 2006 (2006), Art. ID 75968, 17. | MR
& ,[3] On the complexity of algebraic numbers. I. Expansions in integer bases, Ann. of Math. 165 (2007), 547-565. | MR
& ,[4] On the Maillet-Baker continued fractions, J. reine angew. Math. 606 (2007), 105-121. | MR
& ,[5] Palindromic continued fractions, Ann. Inst. Fourier (Grenoble) 57 (2007), 1557-1574. | Numdam | MR
& ,[6] Mesures de transcendance et aspects quantitatifs de la méthode de Thue-Siegel-Roth-Schmidt, Proc. Lond. Math. Soc. 101 (2010), 1-26. | MR
& ,[7] Transcendence measures for continued fractions involving repetitive or symmetric patterns, J. Eur. Math. Soc. (JEMS) 12 (2010), 883-914. | MR
& ,[8] Nombres réels de complexité sous-linéaire : mesures d'irrationalité et de transcendance, J. reine angew. Math. 658 (2011), 65-98. | MR
& ,[9] Continued fractions and transcendental numbers, Ann. Inst. Fourier (Grenoble) 56 (2006), 2093-2113. | Numdam | MR
, & ,[10] Sur la complexité des nombres algébriques, C. R. Math. Acad. Sci. Paris 339 (2004), 11-14. | MR
, & ,[11] On patterns occurring in binary algebraic numbers, Proc. Amer. Math. Soc. 136 (2008), 3105-3109. | MR
& ,[12] Transcendence of Sturmian or morphic continued fractions, J. Number Theory 91 (2001), 39-66. | MR
, , & ,[13] Automatic sequences. Theory, applications, generalizations, Cambridge Univ. Press, 2003. | MR
& ,[14] Continued fractions of transcendental numbers, Mathematika 9 (1962), 1-8. | MR
,[15] An explicit lower bound for the block complexity of an algebraic number, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19 (2008), 229-235. | MR
,[16] Quantitative versions of the subspace theorem and applications, J. Théor. Nombres Bordeaux 23 (2011), 35-57. | Numdam | MR
,[17] Continued fractions with low complexity: transcendence measures and quadratic approximation, Compos. Math. 148 (2012), 718-750. | MR
,[18] On two notions of complexity of algebraic numbers, Acta Arith. 133 (2008), 221-250. | MR
& ,[19] On the Hartmanis-Stearns problem for a class of tag machines, in Ninth Annual Symposium on Switching and Automata Theory, Schenectady, New York, 1968, 51-60.
,[20] Uniform tag sequences, Math. Systems Theory 6 (1972), 164-192. | MR
,[21] Rank and symbolic complexity, Ergodic Theory Dynam. Systems 16 (1996), 663-682. | MR
,[22] An introduction to the theory of numbers, fifth éd., The Clarendon Press Oxford Univ. Press, 1979. | MR
& ,[23] Introduction à la théorie des nombres transcendants et des propriétés arithmétiques des fonctions, Gauthier-Villars, 1906.
,[24] Symbolic Dynamics, Amer. J. Math. 60 (1938), 815-866. | MR
& ,[25] Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42. | MR
& ,[26] Die Lehre von den Kettenbrüchen, Teubner, 1929.
,[27] Transcendance des fractions continues de Thue-Morse, J. Number Theory 73 (1998), 201-211. | MR
,[28] Norm form equations, Ann. of Math. 96 (1972), 526-551. | MR
,[29] Diophantine approximation, Lecture Notes in Math. 785, Springer, 1980. | MR
,Cité par Sources :