Étant donné un corps
Given a finite field
DOI : 10.24033/asens.2215
Keywords: Tate conjecture, twisted sheaves, K3 surfaces, Fourier-Mukai equivalence.
Mot clés : Conjecture de Tate, faisceaux tordus, surfaces K3, équivalence de Fourier-Mukai.
@article{ASENS_2014__47_2_285_0, author = {Lieblich, Max and Maulik, Davesh and Snowden, Andrew}, title = {Finiteness of {K3} surfaces and the {Tate} conjecture}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {285--308}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 47}, number = {2}, year = {2014}, doi = {10.24033/asens.2215}, mrnumber = {3215924}, zbl = {1329.14078}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2215/} }
TY - JOUR AU - Lieblich, Max AU - Maulik, Davesh AU - Snowden, Andrew TI - Finiteness of K3 surfaces and the Tate conjecture JO - Annales scientifiques de l'École Normale Supérieure PY - 2014 SP - 285 EP - 308 VL - 47 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - https://www.numdam.org/articles/10.24033/asens.2215/ DO - 10.24033/asens.2215 LA - en ID - ASENS_2014__47_2_285_0 ER -
%0 Journal Article %A Lieblich, Max %A Maulik, Davesh %A Snowden, Andrew %T Finiteness of K3 surfaces and the Tate conjecture %J Annales scientifiques de l'École Normale Supérieure %D 2014 %P 285-308 %V 47 %N 2 %I Société Mathématique de France. Tous droits réservés %U https://www.numdam.org/articles/10.24033/asens.2215/ %R 10.24033/asens.2215 %G en %F ASENS_2014__47_2_285_0
Lieblich, Max; Maulik, Davesh; Snowden, Andrew. Finiteness of K3 surfaces and the Tate conjecture. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 2, pp. 285-308. doi : 10.24033/asens.2215. https://www.numdam.org/articles/10.24033/asens.2215/
Supersingular K3 surfaces, Ann. Sci. École Norm. Sup., Volume 7 (1974), p. 543-567 (1975) (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
, London Mathematical Society Monographs, 13, Academic Press Inc., 1978, 413 pages (ISBN: 0-12-163260-1) | MR | Zbl
Nonfine moduli spaces of sheaves on K3 surfaces, Int. Math. Res. Not., Volume 2002 (2002), pp. 1027-1056 (ISSN: 1073-7928) | DOI | MR | Zbl
La conjecture de Weil pour les surfaces K3, Invent. Math., Volume 15 (1972), pp. 206-226 (ISSN: 0020-9910) | DOI | MR | Zbl
, Algebraic surfaces (Orsay, 1976–78) (Lecture Notes in Math.), Volume 868, Springer, 1981, pp. 58-79 | MR | Zbl
Equivalences of twisted K3 surfaces, Math. Ann., Volume 332 (2005), pp. 901-936 (ISSN: 0025-5831) | DOI | MR | Zbl
Moduli of twisted sheaves, Duke Math. J., Volume 138 (2007), pp. 23-118 (ISSN: 0012-7094) | DOI | MR | Zbl
Twisted sheaves and the period-index problem, Compos. Math., Volume 144 (2008), pp. 1-31 (ISSN: 0010-437X) | DOI | MR | Zbl
Moduli of twisted orbifold sheaves, Adv. Math., Volume 226 (2011), pp. 4145-4182 (ISSN: 0001-8708) | DOI | MR | Zbl
On the Brauer group of a surface, Invent. Math., Volume 159 (2005), pp. 673-676 (ISSN: 0020-9910) | DOI | MR | Zbl
A note on the cone conjecture for K3 surfaces in positive characteristic (preprint arXiv:1102.3377 ) | MR
Derived equivalence of K3 surfaces in positive characteristic (in preparation)
Number of points of varieties in finite fields, Amer. J. Math., Volume 76 (1954), pp. 819-827 (ISSN: 0002-9327) | DOI | MR | Zbl
Abelian varieties (2008) (available at http://www.jmilne.org/math/CourseNotes/AV.pdf )
, Vector bundles on algebraic varieties (Bombay, 1984) (Tata Inst. Fund. Res. Stud. Math.), Volume 11, Tata Inst. Fund. Res., 1987, pp. 341-413 | MR | Zbl
Tate's conjecture for K3 surfaces of finite height, Ann. of Math., Volume 122 (1985), pp. 461-507 (ISSN: 0003-486X) | DOI | MR | Zbl
, Arithmetic and geometry, Vol. II (Progr. Math.), Volume 36, Birkhäuser, 1983, pp. 361-394 | DOI | MR | Zbl
Projective models of K3 surfaces, Amer. J. Math., Volume 96 (1974), pp. 602-639 (ISSN: 0002-9327) | DOI | MR | Zbl
, Springer, 1973, 115 pages |, Current developments in algebraic geometry (Math. Sci. Res. Inst. Publ.), Volume 59, Cambridge Univ. Press, 2012, pp. 405-426 | MR | Zbl
, Moduli spaces and arithmetic geometry (Adv. Stud. Pure Math.), Volume 45, Math. Soc. Japan, 2006, pp. 1-30 | MR | Zbl
Endomorphisms of abelian varieties and points of finite order in characteristic
Cité par Sources :