Nous caractérisons l'hyperbolicité au sens de Gromov de l'espace quasi-hyperbolique par des propriétés géométriques (dites condition de Gehring-Hayman et condition de séparation des boules) de l'espace métrique mesuré Ahlfors-régulier .
We characterize Gromov hyperbolicity of the quasihyperbolic metric space by geometric properties of the Ahlfors regular length metric measure space . The characterizing properties are called the Gehring-Hayman condition and the ball-separation condition.
DOI : 10.24033/asens.2231
Keywords: Gehring-Hayman inequality, Gromov hyperbolicity, quasihyperbolic metric.
Mot clés : Inégalité de Gehring-Hayman, hyperbolicité de Gromov, métrique quasi-hyperbolique.
@article{ASENS_2014__47_5_975_0, author = {Koskela, Pekka and Lammi, P\"aivi and Manojlovi\'c, Vesna}, title = {Gromov hyperbolicity and quasihyperbolic geodesics}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {975--990}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 47}, number = {5}, year = {2014}, doi = {10.24033/asens.2231}, mrnumber = {3294621}, zbl = {1317.30085}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2231/} }
TY - JOUR AU - Koskela, Pekka AU - Lammi, Päivi AU - Manojlović, Vesna TI - Gromov hyperbolicity and quasihyperbolic geodesics JO - Annales scientifiques de l'École Normale Supérieure PY - 2014 SP - 975 EP - 990 VL - 47 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - http://archive.numdam.org/articles/10.24033/asens.2231/ DO - 10.24033/asens.2231 LA - en ID - ASENS_2014__47_5_975_0 ER -
%0 Journal Article %A Koskela, Pekka %A Lammi, Päivi %A Manojlović, Vesna %T Gromov hyperbolicity and quasihyperbolic geodesics %J Annales scientifiques de l'École Normale Supérieure %D 2014 %P 975-990 %V 47 %N 5 %I Société Mathématique de France. Tous droits réservés %U http://archive.numdam.org/articles/10.24033/asens.2231/ %R 10.24033/asens.2231 %G en %F ASENS_2014__47_5_975_0
Koskela, Pekka; Lammi, Päivi; Manojlović, Vesna. Gromov hyperbolicity and quasihyperbolic geodesics. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 5, pp. 975-990. doi : 10.24033/asens.2231. http://archive.numdam.org/articles/10.24033/asens.2231/
Geometric characterizations of Gromov hyperbolicity, Invent. Math., Volume 153 (2003), pp. 261-301 (ISSN: 0020-9910) | DOI | MR | Zbl
Uniformizing Gromov hyperbolic spaces, Astérisque, Volume 270 (2001) (ISSN: 0303-1179) | Numdam | MR | Zbl
, Lecture Notes in Math., 242, Springer, Berlin-New York, 1971, 160 pages | MR | Zbl
Uniform domains and the quasihyperbolic metric, J. Analyse Math., Volume 36 (1979), pp. 50-74 (ISSN: 0021-7670) | DOI | MR | Zbl
Quasiconformally homogeneous domains, J. Analyse Math., Volume 30 (1976), pp. 172-199 (ISSN: 0021-7670) | DOI | MR | Zbl
Quasiconformal maps in metric spaces with controlled geometry, Acta Math., Volume 181 (1998), pp. 1-61 (ISSN: 0001-5962) | DOI | MR | Zbl
Measure density and extendability of Sobolev functions, Rev. Mat. Iberoam., Volume 24 (2008), pp. 645-669 (ISSN: 0213-2230) | DOI | MR | Zbl
Gehring-Hayman theorem for conformal deformations, Comment. Math. Helv., Volume 88 (2013), pp. 185-203 (ISSN: 0010-2571) | DOI | MR | Zbl
, Cambridge Studies in Advanced Math., 44, Cambridge Univ. Press, Cambridge, 1995, 343 pages (ISBN: 0-521-46576-1; 0-521-65595-1) | DOI | MR | Zbl
A decomposition into atoms of distributions on spaces of homogeneous type, Adv. in Math., Volume 33 (1979), pp. 271-309 (ISSN: 0001-8708) | DOI | MR | Zbl
Cité par Sources :