Nous étudions les actions propres, par isométries, de groupes discrets non virtuellement résolubles
We study proper, isometric actions of non virtually solvable discrete groups
DOI : 10.24033/asens.2275
Keywords: Lorentzian geometry, anti-de Sitter manifolds, Margulis spacetimes, affine geometry, topological tameness, geometric transition.
Mot clés : Géométrie lorentzienne, variétés anti-de Sitter, espaces-temps de Margulis, géométrie affine, sagesse topologique, transition géométrique
@article{ASENS_2016__49_1_1_0, author = {Danciger, Jeffrey and Gu\'eritaud, Fran\c{c}ois and Kassel, Fanny}, title = {Geometry and topology of complete {Lorentz} spacetimes of constant curvature}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1--56}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {1}, year = {2016}, doi = {10.24033/asens.2275}, mrnumber = {3465975}, zbl = {1344.53049}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2275/} }
TY - JOUR AU - Danciger, Jeffrey AU - Guéritaud, François AU - Kassel, Fanny TI - Geometry and topology of complete Lorentz spacetimes of constant curvature JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 1 EP - 56 VL - 49 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - https://www.numdam.org/articles/10.24033/asens.2275/ DO - 10.24033/asens.2275 LA - en ID - ASENS_2016__49_1_1_0 ER -
%0 Journal Article %A Danciger, Jeffrey %A Guéritaud, François %A Kassel, Fanny %T Geometry and topology of complete Lorentz spacetimes of constant curvature %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 1-56 %V 49 %N 1 %I Société Mathématique de France. Tous droits réservés %U https://www.numdam.org/articles/10.24033/asens.2275/ %R 10.24033/asens.2275 %G en %F ASENS_2016__49_1_1_0
Danciger, Jeffrey; Guéritaud, François; Kassel, Fanny. Geometry and topology of complete Lorentz spacetimes of constant curvature. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 1, pp. 1-56. doi : 10.24033/asens.2275. https://www.numdam.org/articles/10.24033/asens.2275/
Properly discontinuous groups of affine transformations: a survey, Geom. Dedicata, Volume 87 (2001), pp. 309-333 (ISSN: 0046-5755) | DOI | MR | Zbl
Algebraic limits of Kleinian groups which rearrange the pages of a book, Invent. math., Volume 126 (1996), pp. 205-214 (ISSN: 0020-9910) | DOI | MR | Zbl
Globally hyperbolic flat space-times, J. Geom. Phys., Volume 53 (2005), pp. 123-165 (ISSN: 0393-0440) | DOI | MR | Zbl
Actions propres sur les espaces homogènes réductifs, Ann. of Math., Volume 144 (1996), pp. 315-347 (ISSN: 0003-486X) | DOI | MR | Zbl
, Teichmüller theory and moduli problem (Ramanujan Math. Soc. Lect. Notes Ser.), Volume 10, Ramanujan Math. Soc., Mysore, 2010, pp. 131-150 | MR | Zbl
Closed time-like curves in flat Lorentz space-times, J. Geom. Phys., Volume 46 (2003), pp. 394-408 (ISSN: 0393-0440) | DOI | MR | Zbl
Proper affine deformation spaces of two-generator Fuchsian groups (preprint arXiv:1501.04535 )
Finite-sided deformation spaces of complete affine 3-manifolds, J. Topol., Volume 7 (2014), pp. 225-246 (ISSN: 1753-8416) | DOI | MR | Zbl
Topological tameness of Margulis spacetimes (preprint arXiv:1204.5308 ) | MR
A geometric transition from hyperbolic to anti-de Sitter geometry, Geom. Topol., Volume 17 (2013), pp. 3077-3134 (ISSN: 1465-3060) | DOI | MR | Zbl
Isospectrality of flat Lorentz 3-manifolds, J. Differential Geom., Volume 58 (2001), pp. 457-465 http://projecteuclid.org/euclid.jdg/1090348355 (ISSN: 0022-040X) | MR | Zbl
Complete flat Lorentz 3-manifolds with free fundamental group, Internat. J. Math., Volume 1 (1990), pp. 149-161 (ISSN: 0129-167X) | DOI | MR | Zbl
Crooked planes, Electron. Res. Announc. Amer. Math. Soc., Volume 1 (1995), pp. 10-17 (ISSN: 1079-6762) | DOI | MR | Zbl
Margulis spacetimes with parabolic elements (in preparation)
Fundamental polyhedra for Margulis space-times, Topology, Volume 31 (1992), pp. 677-683 (ISSN: 0040-9383) | DOI | MR | Zbl
Linear holonomy of Margulis space-times, J. Differential Geom., Volume 38 (1993), pp. 679-690 http://projecteuclid.org/euclid.jdg/1214454487 (ISSN: 0022-040X) | MR | Zbl
Three-dimensional affine crystallographic groups, Adv. in Math., Volume 47 (1983), pp. 1-49 (ISSN: 0001-8708) | DOI | MR | Zbl
Maximally stretched laminations on geometrically finite hyperbolic manifolds (to appear in Geom. Topol., arXiv:1307.0250 ) | MR
Proper affine actions and geodesic flows of hyperbolic surfaces, Ann. of Math., Volume 170 (2009), pp. 1051-1083 (ISSN: 0003-486X) | DOI | MR | Zbl
Complete flat Lorentz 3-manifolds and laminations on hyperbolic surfaces (in preparation)
, Crystallographic groups and their generalizations (Kortrijk, 1999) (Contemp. Math.), Volume 262, Amer. Math. Soc., Providence, RI, 2000, pp. 135-145 | DOI | MR | Zbl
Locally homogeneous geometric manifolds, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi (2010), pp. 717-744 | MR | Zbl
Nonstandard Lorentz space forms, J. Differential Geom., Volume 21 (1985), pp. 301-308 http://projecteuclid.org/euclid.jdg/1214439567 (ISSN: 0022-040X) | MR | Zbl
Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom., Volume 48 (1998), pp. 1-59 http://projecteuclid.org/euclid.jdg/1214460606 (ISSN: 0022-040X) | MR | Zbl
Algebraic and geometric convergence of Kleinian groups, Math. Scand., Volume 66 (1990), pp. 47-72 (ISSN: 0025-5521) | DOI | MR | Zbl
A generalization of Brouwer's fixed point theorem, Duke Math. J., Volume 8 (1941), pp. 457-459 (ISSN: 0012-7094) | DOI | JFM | MR
Quotients compacts d'espaces homogènes réels ou
Über die zusammenziehende und Lipschitzsche Transformationen, Fund. Math., Volume 22 (1934), pp. 77-108 | DOI | JFM | Zbl
Criterion for proper actions on homogeneous spaces of reductive groups, J. Lie Theory, Volume 6 (1996), pp. 147-163 (ISSN: 0949-5932) | MR | Zbl
Deformation of compact Clifford-Klein forms of indefinite-Riemannian homogeneous manifolds, Math. Ann., Volume 310 (1998), pp. 395-409 (ISSN: 0025-5831) | DOI | MR | Zbl
3-dimensional Lorentz space-forms and Seifert fiber spaces, J. Differential Geom., Volume 21 (1985), pp. 231-268 http://projecteuclid.org/euclid.jdg/1214439564 (ISSN: 0022-040X) | MR | Zbl
Fuchsian affine actions of surface groups, J. Differential Geom., Volume 59 (2001), pp. 15-31 http://projecteuclid.org/euclid.jdg/1090349279 (ISSN: 0022-040X) | MR | Zbl
Free completely discontinuous groups of affine transformations, Dokl. Akad. Nauk SSSR, Volume 272 (1983), pp. 785-788 (ISSN: 0002-3264) | MR | Zbl
Complete affine locally flat manifolds with a free fundamental group, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 134 (1984), pp. 190-205 (ISSN: 0373-2703) | MR | Zbl
Lorentz spacetimes of constant curvature (1990), Geom. Dedicata, Volume 126 (2007), pp. 3-45 (ISSN: 0046-5755) | DOI | MR | Zbl
On fundamental groups of complete affinely flat manifolds, Advances in Math., Volume 25 (1977), pp. 178-187 (ISSN: 0001-8708) | DOI | MR | Zbl
Variétés anti-de Sitter de dimension 3 exotiques, Ann. Inst. Fourier (Grenoble), Volume 50 (2000), pp. 257-284 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Variétés anti-de Sitter de dimension 3 (1999) ( http://www.umpa.ens-lyon.fr/~zeghib/these.salein.pdf ) | Numdam | MR | Zbl
There are no fake Seifert fibre spaces with infinite
, Contributions to function theory (internat. Colloq. Function Theory, Bombay, 1960), Tata Institute of Fundamental Research, Bombay, 1960, pp. 147-164 | MR | Zbl
The geometry and topology of three-manifolds (1980) (lecture notes, http://library.msri.org/books/gt3m/ )
Minimal stretch maps between hyperbolic surfaces (1986) (preprint arXiv:math/9801039 ) | MR
Non-compact 3-manifolds and the missing-boundary problem, Topology, Volume 13 (1974), pp. 267-273 (ISSN: 0040-9383) | DOI | MR | Zbl
Contractions in non-Euclidean spaces, Bull. Amer. Math. Soc., Volume 50 (1944), pp. 710-713 (ISSN: 0002-9904) | DOI | MR | Zbl
Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten, Topology, Volume 6 (1967), pp. 505-517 (ISSN: 0040-9383) | DOI | MR | Zbl
- Topology and dynamics of compact plane waves, Journal für die reine und angewandte Mathematik (Crelles Journal) (2025) | DOI:10.1515/crelle-2024-0095
- A cyclotomic family of thin hypergeometric monodromy groups in
, Geometriae Dedicata, Volume 218 (2024) no. 2 | DOI:10.1007/s10711-024-00893-4 - The infinitesimal earthquake theorem for vector fields on the circle, Transactions of the American Mathematical Society (2024) | DOI:10.1090/tran/9243
- The Heisenberg plane, Algebraic Geometric Topology, Volume 23 (2023) no. 4, p. 1463 | DOI:10.2140/agt.2023.23.1463
- Tameness of Margulis space-times with parabolics, Forum Mathematicum, Volume 35 (2023) no. 1, p. 1 | DOI:10.1515/forum-2019-0331
- Ergodicity and equidistribution in Hilbert geometry, Journal of Modern Dynamics, Volume 19 (2023) no. 0, p. 879 | DOI:10.3934/jmd.2023026
- Proper affine actions for right-angled Coxeter groups, Duke Mathematical Journal, Volume 169 (2020) no. 12 | DOI:10.1215/00127094-2019-0084
- COARSE AND FINE GEOMETRY OF THE THURSTON METRIC, Forum of Mathematics, Sigma, Volume 8 (2020) | DOI:10.1017/fms.2020.3
- Anti-de Sitter Geometry and Teichmüller Theory, In the Tradition of Thurston (2020), p. 545 | DOI:10.1007/978-3-030-55928-1_15
- Timelike Hilbert and Funk geometries, Differential Geometry and its Applications, Volume 67 (2019), p. 101554 | DOI:10.1016/j.difgeo.2019.101554
- Affine actions with Hitchin linear part, Geometric and Functional Analysis, Volume 29 (2019) no. 5, p. 1369 | DOI:10.1007/s00039-019-00511-6
- Bijections of geodesic lamination space preserving left Hausdorff convergence, Monatshefte für Mathematik, Volume 189 (2019) no. 3, p. 507 | DOI:10.1007/s00605-018-1233-4
- The pressure metric on the Margulis multiverse, Geometriae Dedicata, Volume 193 (2018) no. 1, p. 1 | DOI:10.1007/s10711-017-0260-y
- Area-preserving diffeomorphisms of the hyperbolic plane and K-surfaces in anti-de Sitter space, Journal of Topology, Volume 11 (2018) no. 2, p. 420 | DOI:10.1112/topo.12058
- Limits of Geometries, Transactions of the American Mathematical Society, Volume 370 (2018) no. 9, p. 6585 | DOI:10.1090/tran/7174
- Maximally stretched laminations on geometrically finite hyperbolic manifolds, Geometry Topology, Volume 21 (2017) no. 2, p. 693 | DOI:10.2140/gt.2017.21.693
- Lengthening deformations of singular hyperbolic tori, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 24 (2016) no. 5, p. 1239 | DOI:10.5802/afst.1483
Cité par 17 documents. Sources : Crossref