Nous étudions les actions propres, par isométries, de groupes discrets non virtuellement résolubles sur l'espace de Minkowski , en les voyant comme limites d'actions sur l'espace anti-de Sitter . À une telle action sur est associée une déformation infinitésimale, dans , du groupe fondamental d'une surface hyperbolique . Lorsque est convexe cocompacte, nous montrons que agit proprement sur si et seulement si cette déformation au niveau du groupe est réalisée par une déformation de qui contracte uniformément ou dilate uniformément toutes les distances. Nous donnons deux applications dans ce cas. (1) Sagesse topologique : un espace-temps plat complet est homéomorphe à l'intérieur d'une variété compacte à bord. (2) Transition géométrique : un espace-temps plat complet est la limite renormalisée d'espaces-temps qui dégénèrent.
We study proper, isometric actions of non virtually solvable discrete groups on the 3-dimensional Minkowski space , viewing them as limits of actions on the 3-dimensional anti-de Sitter space . To each such action on is associated an infinitesimal deformation, inside , of the fundamental group of a hyperbolic surface . When is convex cocompact, we prove that acts properly on if and only if this group-level deformation is realized by a deformation of that uniformly contracts or uniformly expands all distances. We give two applications in this case. (1) Tameness: A complete flat spacetime is homeomorphic to the interior of a compact manifold with boundary. (2) Geometric transition: A complete flat spacetime is the rescaled limit of collapsing spacetimes.
DOI : 10.24033/asens.2275
Keywords: Lorentzian geometry, anti-de Sitter manifolds, Margulis spacetimes, affine geometry, topological tameness, geometric transition.
Mot clés : Géométrie lorentzienne, variétés anti-de Sitter, espaces-temps de Margulis, géométrie affine, sagesse topologique, transition géométrique
@article{ASENS_2016__49_1_1_0, author = {Danciger, Jeffrey and Gu\'eritaud, Fran\c{c}ois and Kassel, Fanny}, title = {Geometry and topology of complete {Lorentz} spacetimes of constant curvature}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1--56}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {1}, year = {2016}, doi = {10.24033/asens.2275}, mrnumber = {3465975}, zbl = {1344.53049}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2275/} }
TY - JOUR AU - Danciger, Jeffrey AU - Guéritaud, François AU - Kassel, Fanny TI - Geometry and topology of complete Lorentz spacetimes of constant curvature JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 1 EP - 56 VL - 49 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - http://archive.numdam.org/articles/10.24033/asens.2275/ DO - 10.24033/asens.2275 LA - en ID - ASENS_2016__49_1_1_0 ER -
%0 Journal Article %A Danciger, Jeffrey %A Guéritaud, François %A Kassel, Fanny %T Geometry and topology of complete Lorentz spacetimes of constant curvature %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 1-56 %V 49 %N 1 %I Société Mathématique de France. Tous droits réservés %U http://archive.numdam.org/articles/10.24033/asens.2275/ %R 10.24033/asens.2275 %G en %F ASENS_2016__49_1_1_0
Danciger, Jeffrey; Guéritaud, François; Kassel, Fanny. Geometry and topology of complete Lorentz spacetimes of constant curvature. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 1, pp. 1-56. doi : 10.24033/asens.2275. http://archive.numdam.org/articles/10.24033/asens.2275/
Properly discontinuous groups of affine transformations: a survey, Geom. Dedicata, Volume 87 (2001), pp. 309-333 (ISSN: 0046-5755) | DOI | MR | Zbl
Algebraic limits of Kleinian groups which rearrange the pages of a book, Invent. math., Volume 126 (1996), pp. 205-214 (ISSN: 0020-9910) | DOI | MR | Zbl
Globally hyperbolic flat space-times, J. Geom. Phys., Volume 53 (2005), pp. 123-165 (ISSN: 0393-0440) | DOI | MR | Zbl
Actions propres sur les espaces homogènes réductifs, Ann. of Math., Volume 144 (1996), pp. 315-347 (ISSN: 0003-486X) | DOI | MR | Zbl
, Teichmüller theory and moduli problem (Ramanujan Math. Soc. Lect. Notes Ser.), Volume 10, Ramanujan Math. Soc., Mysore, 2010, pp. 131-150 | MR | Zbl
Closed time-like curves in flat Lorentz space-times, J. Geom. Phys., Volume 46 (2003), pp. 394-408 (ISSN: 0393-0440) | DOI | MR | Zbl
Proper affine deformation spaces of two-generator Fuchsian groups (preprint arXiv:1501.04535 )
Finite-sided deformation spaces of complete affine 3-manifolds, J. Topol., Volume 7 (2014), pp. 225-246 (ISSN: 1753-8416) | DOI | MR | Zbl
Topological tameness of Margulis spacetimes (preprint arXiv:1204.5308 ) | MR
A geometric transition from hyperbolic to anti-de Sitter geometry, Geom. Topol., Volume 17 (2013), pp. 3077-3134 (ISSN: 1465-3060) | DOI | MR | Zbl
Isospectrality of flat Lorentz 3-manifolds, J. Differential Geom., Volume 58 (2001), pp. 457-465 http://projecteuclid.org/euclid.jdg/1090348355 (ISSN: 0022-040X) | MR | Zbl
Complete flat Lorentz 3-manifolds with free fundamental group, Internat. J. Math., Volume 1 (1990), pp. 149-161 (ISSN: 0129-167X) | DOI | MR | Zbl
Crooked planes, Electron. Res. Announc. Amer. Math. Soc., Volume 1 (1995), pp. 10-17 (ISSN: 1079-6762) | DOI | MR | Zbl
Margulis spacetimes with parabolic elements (in preparation)
Fundamental polyhedra for Margulis space-times, Topology, Volume 31 (1992), pp. 677-683 (ISSN: 0040-9383) | DOI | MR | Zbl
Linear holonomy of Margulis space-times, J. Differential Geom., Volume 38 (1993), pp. 679-690 http://projecteuclid.org/euclid.jdg/1214454487 (ISSN: 0022-040X) | MR | Zbl
Three-dimensional affine crystallographic groups, Adv. in Math., Volume 47 (1983), pp. 1-49 (ISSN: 0001-8708) | DOI | MR | Zbl
Maximally stretched laminations on geometrically finite hyperbolic manifolds (to appear in Geom. Topol., arXiv:1307.0250 ) | MR
Proper affine actions and geodesic flows of hyperbolic surfaces, Ann. of Math., Volume 170 (2009), pp. 1051-1083 (ISSN: 0003-486X) | DOI | MR | Zbl
Complete flat Lorentz 3-manifolds and laminations on hyperbolic surfaces (in preparation)
, Crystallographic groups and their generalizations (Kortrijk, 1999) (Contemp. Math.), Volume 262, Amer. Math. Soc., Providence, RI, 2000, pp. 135-145 | DOI | MR | Zbl
Locally homogeneous geometric manifolds, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi (2010), pp. 717-744 | MR | Zbl
Nonstandard Lorentz space forms, J. Differential Geom., Volume 21 (1985), pp. 301-308 http://projecteuclid.org/euclid.jdg/1214439567 (ISSN: 0022-040X) | MR | Zbl
Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom., Volume 48 (1998), pp. 1-59 http://projecteuclid.org/euclid.jdg/1214460606 (ISSN: 0022-040X) | MR | Zbl
Algebraic and geometric convergence of Kleinian groups, Math. Scand., Volume 66 (1990), pp. 47-72 (ISSN: 0025-5521) | DOI | MR | Zbl
A generalization of Brouwer's fixed point theorem, Duke Math. J., Volume 8 (1941), pp. 457-459 (ISSN: 0012-7094) | DOI | JFM | MR
Quotients compacts d'espaces homogènes réels ou -adiques (2009) ( http://math.univ-lille1.fr/~kassel/ )
Über die zusammenziehende und Lipschitzsche Transformationen, Fund. Math., Volume 22 (1934), pp. 77-108 | DOI | JFM | Zbl
Criterion for proper actions on homogeneous spaces of reductive groups, J. Lie Theory, Volume 6 (1996), pp. 147-163 (ISSN: 0949-5932) | MR | Zbl
Deformation of compact Clifford-Klein forms of indefinite-Riemannian homogeneous manifolds, Math. Ann., Volume 310 (1998), pp. 395-409 (ISSN: 0025-5831) | DOI | MR | Zbl
3-dimensional Lorentz space-forms and Seifert fiber spaces, J. Differential Geom., Volume 21 (1985), pp. 231-268 http://projecteuclid.org/euclid.jdg/1214439564 (ISSN: 0022-040X) | MR | Zbl
Fuchsian affine actions of surface groups, J. Differential Geom., Volume 59 (2001), pp. 15-31 http://projecteuclid.org/euclid.jdg/1090349279 (ISSN: 0022-040X) | MR | Zbl
Free completely discontinuous groups of affine transformations, Dokl. Akad. Nauk SSSR, Volume 272 (1983), pp. 785-788 (ISSN: 0002-3264) | MR | Zbl
Complete affine locally flat manifolds with a free fundamental group, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 134 (1984), pp. 190-205 (ISSN: 0373-2703) | MR | Zbl
Lorentz spacetimes of constant curvature (1990), Geom. Dedicata, Volume 126 (2007), pp. 3-45 (ISSN: 0046-5755) | DOI | MR | Zbl
On fundamental groups of complete affinely flat manifolds, Advances in Math., Volume 25 (1977), pp. 178-187 (ISSN: 0001-8708) | DOI | MR | Zbl
Variétés anti-de Sitter de dimension 3 exotiques, Ann. Inst. Fourier (Grenoble), Volume 50 (2000), pp. 257-284 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Variétés anti-de Sitter de dimension 3 (1999) ( http://www.umpa.ens-lyon.fr/~zeghib/these.salein.pdf ) | Numdam | MR | Zbl
There are no fake Seifert fibre spaces with infinite , Ann. of Math., Volume 117 (1983), pp. 35-70 (ISSN: 0003-486X) | DOI | MR | Zbl
, Contributions to function theory (internat. Colloq. Function Theory, Bombay, 1960), Tata Institute of Fundamental Research, Bombay, 1960, pp. 147-164 | MR | Zbl
The geometry and topology of three-manifolds (1980) (lecture notes, http://library.msri.org/books/gt3m/ )
Minimal stretch maps between hyperbolic surfaces (1986) (preprint arXiv:math/9801039 ) | MR
Non-compact 3-manifolds and the missing-boundary problem, Topology, Volume 13 (1974), pp. 267-273 (ISSN: 0040-9383) | DOI | MR | Zbl
Contractions in non-Euclidean spaces, Bull. Amer. Math. Soc., Volume 50 (1944), pp. 710-713 (ISSN: 0002-9904) | DOI | MR | Zbl
Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten, Topology, Volume 6 (1967), pp. 505-517 (ISSN: 0040-9383) | DOI | MR | Zbl
Cité par Sources :