Existence of flips and minimal models for 3-folds in char p
[Existence de flips et de modèles minimaux pour les variétés de dimension 3 en caractéristique p ]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 1, pp. 169-212.

Étant donnée une paire (X,B) de dimension trois sur un corps algébriquement clos k de caractéristique p>5, nous prouvons les résultats suivants : existence de log-flips lorsque la paire est -factorielle et dlt; existence de log-modèles minimaux lorsque la paire est klt, projective, et avec KX+B pseudo-effectif ; finitude de l'anneau log-canonique R(KX+B) lorsque la paire est klt, projective, et avec KX+B gros; semi-amplitude pour un -diviseur nef et gros D, sous la condition que D-(KX+B) est nef et gros et que (X,B) est klt et projective; existence de modèles dlt et -factoriels lorsque la paire est lc; existence de modèles terminaux lorsque la paire est klt; validité de la Conjecture ACC pour le seuil lc, etc.

We will prove the following results for 3-fold pairs (X,B) over an algebraically closed field k of characteristic p>5: log flips exist for -factorial dlt pairs (X,B); log minimal models exist for projective klt pairs (X,B) with pseudo-effective KX+B; the log canonical ring R(KX+B) is finitely generated for projective klt pairs (X,B) when KX+B is a big -divisor; semi-ampleness holds for a nef and big -divisor D if D-(KX+B) is nef and big and (X,B) is projective klt; -factorial dlt models exist for lc pairs (X,B); terminal models exist for klt pairs (X,B); ACC holds for lc thresholds, etc.

Publié le :
DOI : 10.24033/asens.2279
Classification : 14E30
Keywords: Flip, minimal model, log canonical ring, log canonical threshold, characteristic $p$.
Mot clés : Flip, modèles minimaux, anneau log-canonique, seuil log-canonique, caractéristique $p$.
@article{ASENS_2016__49_1_169_0,
     author = {Birkar, Caucher},
     title = {Existence of flips and minimal models  for 3-folds in char~$p$},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {169--212},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 49},
     number = {1},
     year = {2016},
     doi = {10.24033/asens.2279},
     mrnumber = {3465979},
     zbl = {1346.14040},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.2279/}
}
TY  - JOUR
AU  - Birkar, Caucher
TI  - Existence of flips and minimal models  for 3-folds in char $p$
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2016
SP  - 169
EP  - 212
VL  - 49
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://archive.numdam.org/articles/10.24033/asens.2279/
DO  - 10.24033/asens.2279
LA  - en
ID  - ASENS_2016__49_1_169_0
ER  - 
%0 Journal Article
%A Birkar, Caucher
%T Existence of flips and minimal models  for 3-folds in char $p$
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 169-212
%V 49
%N 1
%I Société Mathématique de France. Tous droits réservés
%U http://archive.numdam.org/articles/10.24033/asens.2279/
%R 10.24033/asens.2279
%G en
%F ASENS_2016__49_1_169_0
Birkar, Caucher. Existence of flips and minimal models  for 3-folds in char $p$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 1, pp. 169-212. doi : 10.24033/asens.2279. http://archive.numdam.org/articles/10.24033/asens.2279/

Alexeev, V. Boundedness and K2 for log surfaces, Internat. J. Math., Volume 5 (1994), pp. 779-810 (ISSN: 0129-167X) | DOI | MR | Zbl

Birkar, C.; Cascini, P.; Hacon, C. D.; McKernan, J. Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., Volume 23 (2010), pp. 405-468 (ISSN: 0894-0347) | DOI | MR | Zbl

Birkar, C. Ascending chain condition for log canonical thresholds and termination of log flips, Duke Math. J., Volume 136 (2007), pp. 173-180 (ISSN: 0012-7094) | DOI | MR | Zbl

Birkar, C. On existence of log minimal models, Compos. Math., Volume 146 (2010), pp. 919-928 (ISSN: 0010-437X) | DOI | MR | Zbl

Birkar, C. On existence of log minimal models and weak Zariski decompositions, Math. Ann., Volume 354 (2012), pp. 787-799 (ISSN: 0025-5831) | DOI | MR | Zbl

Birkar, C.; Păun, M. Minimal models, flips and finite generation: a tribute to V.V. Shokurov and Y.-T. Siu, Classification of algebraic varieties (Series of congress reports), European Math. Society (2010) | DOI | MR | Zbl

Cascini, P.; Gongyo, Y.; Schwede, K. Uniform bounds for strongly F -regular surfaces (preprint arXiv:1402.0027, to appear in Trans. Amer. Math. Soc ) | MR

Cascini, P.; McKernan, J.; Mustaţă, M. The augmented base locus in positive characteristic, Proc. Edinb. Math. Soc., Volume 57 (2014), pp. 79-87 (ISSN: 0013-0915) | DOI | MR | Zbl

Cossart, V.; Piltant, O. Resolution of singularities of threefolds in positive characteristic. I. Reduction to local uniformization on Artin-Schreier and purely inseparable coverings, J. Algebra, Volume 320 (2008), pp. 1051-1082 (ISSN: 0021-8693) | DOI | MR | Zbl

Cossart, V.; Piltant, O. Resolution of singularities of threefolds in positive characteristic. II, J. Algebra, Volume 321 (2009), pp. 1836-1976 (ISSN: 0021-8693) | DOI | MR | Zbl

Cascini, P.; Tanaka, H.; Xu, C. On base point freeness in positive characteristic, Ann. Scient. Éc. Norm. Sup., Volume 48 (2015), pp. 1239-1272 | DOI | Numdam | MR | Zbl

Cutkosky, S. D. Resolution of singularities for 3-folds in positive characteristic, Amer. J. Math., Volume 131 (2009), pp. 59-127 (ISSN: 0002-9327) | DOI | MR | Zbl

Hacon, C. D.; Xu, C. On the three dimensional minimal model program in positive characteristic, J. Amer. Math. Soc., Volume 28 (2015), pp. 711-744 (ISSN: 0894-0347) | DOI | MR | Zbl

Kawamata, Y. Semistable minimal models of threefolds in positive or mixed characteristic, J. Algebraic Geom., Volume 3 (1994), pp. 463-491 (ISSN: 1056-3911) | MR | Zbl

Keel, S. Basepoint freeness for nef and big line bundles in positive characteristic, Ann. of Math., Volume 149 (1999), pp. 253-286 (ISSN: 0003-486X) | DOI | MR | Zbl

Kollár, J.; Mori, S., Cambridge Tracts in Mathematics, 134, Cambridge Univ. Press, Cambridge, 1998, 254 pages (ISBN: 0-521-63277-3) | DOI | MR | Zbl

Kawamata, Y.; Matsuda, K.; Matsuki, K., Algebraic geometry, Sendai, 1985 (Adv. Stud. Pure Math.), Volume 10, North-Holland, Amsterdam, 1987, pp. 283-360 | DOI | MR | Zbl

Keel, S.; Matsuki, K.; McKernan, J. Log abundance theorem for threefolds, Duke Math. J., Volume 75 (1994), pp. 99-119 (ISSN: 0012-7094) | DOI | MR | Zbl

Kollár, J., Cambridge Tracts in Mathematics, 200, Cambridge Univ. Press, Cambridge, 2013, 370 pages (ISBN: 978-1-107-03534-8) | DOI | MR | Zbl

Kollár, J., Astérisque, 211, Soc. Math. France, 1992, pp. 1-258 (ISSN: 0303-1179) | MR

Kollár, J., Ergebn. Math. Grenzg.. 3. Folge. A Series of Modern Surveys in Mathematics, 32, Springer, Berlin, 1996, 320 pages (ISBN: 3-540-60168-6) | DOI | MR | Zbl

McKernan, J.; Prokhorov, Y. Threefold thresholds, Manuscripta Math., Volume 114 (2004), pp. 281-304 (ISSN: 0025-2611) | DOI | MR | Zbl

Schwede, K. F -singularities and Frobenius splitting (lecture notes, http://www.math.utah.edu/~schwede/frob/RunningTotal.pdf )

Shafarevich, I. R., Notes by C. P. Ramanujam. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, No. 37, Tata Institute of Fundamental Research, Bombay, 1966, 175 pages | MR | Zbl

Shokurov, V. V. Prelimiting flips, Tr. Mat. Inst. Steklova, Volume 240 (2003), pp. 82-219 (ISSN: 0371-9685) | MR | Zbl

Shokurov, V. V. A nonvanishing theorem, Izv. Akad. Nauk SSSR Ser. Mat., Volume 49 (1985), pp. 635-651 (ISSN: 0373-2436) | MR | Zbl

Shokurov, V. V. Three-dimensional log flips, Izv. Ross. Akad. Nauk Ser. Mat., Volume 40 (1993), pp. 95-202 (ISSN: 0373-2436) | DOI | MR | Zbl

Tanaka, H. Abundance theorem for semi log canonical surfaces in positive characteristic (preprint arXiv:1301.6889 ) | MR

Tanaka, H. Minimal models and abundance for positive characteristic log surfaces, Nagoya Math. J., Volume 216 (2014), pp. 1-70 (ISSN: 0027-7630) | DOI | MR | Zbl

Xu, C. On base point free theorem of threefolds in positive characteristic (preprint arXiv:1311.3819, to appear in J. Inst. Math. Jussieu ) | MR

Cité par Sources :