On semi-classical limit of nonlinear quantum scattering
[Limite semi-classique pour le scattering quantique non linéaire]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 3, pp. 711-756.

Nous considérons l'équation de Schrödinger non linéaire en présence d'un potentiel à courte portée, en régime semi-classique. Lorsque la constante de Planck est fixée, une théorie du scattering permet d'établir qu'à la fois le potentiel et la non-linéarité sont négligeables en temps grand. Par ailleurs, pour des données sous la forme d'états cohérents, nous établissons une théorie du scattering pour l'équation d'enveloppe, elle-même non linéaire. Dans la limite semi-classique, les deux opérateurs de scattering peuvent être comparés, en faisant intervenir en outre la théorie du scattering classique, grâce à une estimation d'erreur uniforme en temps. Enfin, nous déduisons un phénomène de découplage en temps grand dans le cas d'un nombre fini d'états cohérents.

We consider the nonlinear Schrödinger equation with a short-range external potential, in a semi-classical scaling. We show that for fixed Planck constant, a complete scattering theory is available, showing that both the potential and the nonlinearity are asymptotically negligible for large time. Then, for data under the form of coherent state, we show that a scattering theory is also available for the approximate envelope of the propagated coherent state, which is given by a nonlinear equation. In the semi-classical limit, these two scattering operators can be compared in terms of classical scattering theory, thanks to a uniform in time error estimate. Finally, we infer a large time decoupling phenomenon in the case of finitely many initial coherent states.

Publié le :
DOI : 10.24033/asens.2294
Classification : 35Q55; 35B40, 35P25, 81Q20.
Keywords: Nonlinear Schrödinger equation, scattering, semi-classical analysis, coherent states, time dependent harmonic oscillator.
Mot clés : Équation de Schrödinger non linéaire, scattering, analyse semi-classique, états cohérents, oscillateur harmonique dépendant du temps.
@article{ASENS_2016__49_3_711_0,
     author = {Carles, R\'emi},
     title = {On semi-classical limit  of nonlinear quantum scattering},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {711--756},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 49},
     number = {3},
     year = {2016},
     doi = {10.24033/asens.2294},
     mrnumber = {3503830},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.2294/}
}
TY  - JOUR
AU  - Carles, Rémi
TI  - On semi-classical limit  of nonlinear quantum scattering
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2016
SP  - 711
EP  - 756
VL  - 49
IS  - 3
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://archive.numdam.org/articles/10.24033/asens.2294/
DO  - 10.24033/asens.2294
LA  - en
ID  - ASENS_2016__49_3_711_0
ER  - 
%0 Journal Article
%A Carles, Rémi
%T On semi-classical limit  of nonlinear quantum scattering
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 711-756
%V 49
%N 3
%I Société Mathématique de France. Tous droits réservés
%U http://archive.numdam.org/articles/10.24033/asens.2294/
%R 10.24033/asens.2294
%G en
%F ASENS_2016__49_3_711_0
Carles, Rémi. On semi-classical limit  of nonlinear quantum scattering. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 3, pp. 711-756. doi : 10.24033/asens.2294. http://archive.numdam.org/articles/10.24033/asens.2294/

Bahouri, H.; Gérard, P. High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., Volume 121 (1999), pp. 131-175 (ISSN: 0002-9327) | DOI | MR | Zbl

Bambusi, D.; Graffi, S.; Paul, T. Long time semiclassical approximation of quantum flows: a proof of the Ehrenfest time, Asymptot. Anal., Volume 21 (1999), pp. 149-160 (ISSN: 0921-7134) | MR | Zbl

Burq, N.; Planchon, F.; Stalker, J. G.; Tahvildar-Zadeh, A. S. Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., Volume 203 (2003), pp. 519-549 (ISSN: 0022-1236) | DOI | MR | Zbl

Burq, N.; Planchon, F.; Stalker, J. G.; Tahvildar-Zadeh, A. S. Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J., Volume 53 (2004), pp. 1665-1680 (ISSN: 0022-2518) | DOI | MR | Zbl

Bouzouina, A.; Robert, D. Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J., Volume 111 (2002), pp. 223-252 | DOI | MR | Zbl

Barceló, J. A.; Ruiz, A.; Vega, L. Some dispersive estimates for Schrödinger equations with repulsive potentials, J. Funct. Anal., Volume 236 (2006), pp. 1-24 | DOI | MR | Zbl

Carles, R. Global existence results for nonlinear Schrödinger equations with quadratic potentials, Discrete Contin. Dyn. Syst., Volume 13 (2005), pp. 385-398 | arXiv | DOI | MR | Zbl

Carles, R. Nonlinear Schrödinger equation with time dependent potential, Commun. Math. Sci., Volume 9 (2011), pp. 937-964 | DOI | MR | Zbl

Cazenave, T., Courant Lecture Notes in Math., 10, New York University Courant Institute of Mathematical Sciences, 2003, 323 pages | MR | Zbl

Cardoso, F.; Cuevas, C.; Vodev, G. Dispersive estimates for the Schrödinger equation in dimensions four and five, Asymptot. Anal., Volume 62 (2009), pp. 125-145 (ISSN: 0921-7134) | MR | Zbl

Cassano, B.; D'Ancona, P. Scattering in the energy space for the NLS with variable coefficients (preprint arXiv:1502.00937, to appear in Math. Ann ) | MR

Carles, R.; Drumond Silva, J. Large time behavior in nonlinear Schrödinger equation with time dependent potential, Commun. Math. Sci., Volume 13 (2015), pp. 443-460 | DOI | MR

Carles, R.; Fermanian Kammerer, C. Nonlinear coherent states and Ehrenfest time for Schrödinger equations, Commun. Math. Phys., Volume 301 (2011), pp. 443-472 | DOI | MR | Zbl

Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on 3 , Comm. Pure Appl. Math., Volume 57 (2004), pp. 987-1014 (ISSN: 0010-3640) | DOI | MR | Zbl

Combescure, M.; Robert, D., Theoretical and Mathematical Physics, Springer, Dordrecht, 2012, 415 pages (ISBN: 978-94-007-0195-3) | DOI | MR | Zbl

Cordero-Soto, R.; Lopez, R. M.; Suazo, E.; Suslov, S. K. Propagator of a charged particle with a spin in uniform magnetic and perpendicular electric fields, Lett. Math. Phys., Volume 84 (2008), pp. 159-178 (ISSN: 0377-9017) | DOI | MR | Zbl

Cazenave, T.; Weissler, F. The Cauchy problem for the critical nonlinear Schrödinger equation in Hs , Nonlinear Anal. TMA, Volume 14 (1990), pp. 807-836 | DOI | MR | Zbl

Cazenave, T.; Weissler, F. Rapidly Decaying Solutions of the Nonlinear Schrödinger Equation, Comm. Math. Phys., Volume 147 (1992), pp. 75-100 | DOI | MR | Zbl

D'Ancona, P.; Fanelli, L.; Vega, L.; Visciglia, N. Endpoint Strichartz estimates for the magnetic Schrödinger equation, J. Funct. Anal., Volume 258 (2010), pp. 3227-3240 (ISSN: 0022-1236) | DOI | MR | Zbl

Dereziński, J.; Gérard, C., Texts and Monographs in Physics, Springer Verlag, Berlin Heidelberg, 1997 | MR | Zbl

Duyckaerts, T.; Holmer, J.; Roudenko, S. Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., Volume 15 (2008), pp. 1233-1250 (ISSN: 1073-2780) | DOI | MR | Zbl

Erdoğan, M. B.; Green, W. R. Dispersive estimates for the Schrödinger equation for Cn-32 potentials in odd dimensions, Int. Math. Res. Not., Volume 2010 (2010), pp. 2532-2565 (ISSN: 1073-7928) | MR | Zbl

Feynman, R. P.; Hibbs, A. R., International Series in Pure and Applied Physics, Maidenhead, McGraw-Hill Publishing Company, Ltd., 1965 | Zbl

Foschi, D. Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., Volume 2 (2005), pp. 1-24 (ISSN: 0219-8916) | DOI | MR | Zbl

Fujiwara, D. Remarks on the convergence of the Feynman path integrals, Duke Math. J., Volume 47 (1980), pp. 559-600 | DOI | MR | Zbl

Ginibre, J. Introduction aux équations de Schrödinger non linéaires (1995) (cours de DEA, http://sites.mathdoc.fr/PMO/PDF/G_GINIBRE-48.pdf )

Goldberg, M. Dispersive bounds for the three-dimensional Schrödinger equation with almost critical potentials, Geom. Funct. Anal., Volume 16 (2006), pp. 517-536 (ISSN: 1016-443X) | DOI | MR | Zbl

Ginibre, J.; Velo, G. Quadratic Morawetz inequalities and asymptotic completeness in the energy space for nonlinear Schrödinger and Hartree equations, Quart. Appl. Math., Volume 68 (2010), pp. 113-134 (ISSN: 0033-569X) | DOI | MR | Zbl

Ginibre, J.; Velo, G. On a class of nonlinear Schrödinger equations. II Scattering theory, general case, J. Funct. Anal., Volume 32 (1979), pp. 33-71 | DOI | MR | Zbl

Ginibre, J.; Velo, G. The classical field limit of scattering theory for nonrelativistic many-boson systems. I, Comm. Math. Phys., Volume 66 (1979), pp. 37-76 http://projecteuclid.org/euclid.cmp/1103904940 (ISSN: 0010-3616) | DOI | MR | Zbl

Ginibre, J.; Velo, G. Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl., Volume 64 (1985), pp. 363-401 (ISSN: 0021-7824) | MR | Zbl

Goldberg, M.; Vega, L.; Visciglia, N. Counterexamples of Strichartz inequalities for Schrödinger equations with repulsive potentials, Int. Math. Res. Not., Volume 2006 (2006) (ISSN: 1073-7928) | DOI | MR | Zbl

Hagedorn, G. A. Semiclassical quantum mechanics. I. The 0 limit for coherent states, Comm. Math. Phys., Volume 71 (1980), pp. 77-93 http://projecteuclid.org/getRecord?id=euclid.cmp/1103907396 (ISSN: 0010-3616) | MR

Hagedorn, G. A. Semiclassical quantum mechanics. III. The large order asymptotics and more general states, Ann. Physics, Volume 135 (1981), pp. 58-70 (ISSN: 0003-4916) | DOI | MR

Hari, L. Coherent states for systems of L2-supercritical nonlinear Schrödinger equations, Comm. Partial Differential Equations, Volume 38 (2013), pp. 529-573 | DOI | MR | Zbl

Hagedorn, G. A.; Joye, A. Exponentially accurate semiclassical dynamics: propagation, localization, Ehrenfest times, scattering, and more general states, Ann. Henri Poincaré, Volume 1 (2000), pp. 837-883 (ISSN: 1424-0637) | DOI | MR | Zbl

Hagedorn, G. A.; Joye, A. A time-dependent Born-Oppenheimer approximation with exponentially small error estimates, Comm. Math. Phys., Volume 223 (2001), pp. 583-626 (ISSN: 0010-3616) | DOI | MR | Zbl

Hong, Y. Scattering for a nonlinear Schrödinger equation with a potential, 2014 (preprint arXiv:1403.3944 ) | MR

Hörmander, L. Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z., Volume 219 (1995), pp. 413-449 (ISSN: 0025-5874) | DOI | MR | Zbl

Holmer, J.; Roudenko, S. A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., Volume 282 (2008), pp. 435-467 (ISSN: 0010-3616) | DOI | MR | Zbl

Kato, T., Spectral and scattering theory and applications (Adv. Stud. Pure Math.), Volume 23, Math. Soc. Japan, Tokyo, 1994, pp. 223-238 | DOI | MR | Zbl

Keraani, S. On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Diff. Eq., Volume 175 (2001), pp. 353-392 (ISSN: 0022-0396) | DOI | MR | Zbl

Keel, M.; Tao, T. Endpoint Strichartz Estimates, Amer. J. Math., Volume 120 (1998), pp. 955-980 | DOI | MR | Zbl

Killip, R.; Visan, M.; Zhang, X. Energy-critical NLS with quadratic potentials, Comm. Partial Differential Equations, Volume 34 (2009), pp. 1531-1565 (ISSN: 0360-5302) | DOI | MR | Zbl

Lin, J. E.; Strauss, W. A. Decay and scattering of solutions of a nonlinear Schrödinger equation, J. Funct. Anal., Volume 30 (1978), pp. 245-263 (ISSN: 0022-1236) | DOI | MR | Zbl

Mourre, E. Absence of singular continuous spectrum for certain selfadjoint operators, Comm. Math. Phys., Volume 78 (1981), pp. 391-408 | DOI | MR | Zbl

Merle, F.; Vega, L. Compactness at blow-up time for L2 solutions of the critical nonlinear Schrödinger equation in 2D, Int. Math. Res. Not., Volume 1998 (1998), pp. 399-425 (ISSN: 1073-7928) | DOI | MR | Zbl

Nakanishi, K. Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions 1 and 2, J. Funct. Anal., Volume 169 (1999), pp. 201-225 (ISSN: 0022-1236) | DOI | MR | Zbl

Nier, F. A semi-classical picture of quantum scattering, Ann. Sci. Éc. Norm. Sup., Volume 29 (1996), pp. 149-183 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Planchon, F.; Vega, L. Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Sup., Volume 42 (2009), pp. 261-290 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Rauch, J., Graduate Texts in Math., 128, Springer, 1991 | MR | Zbl

Rodnianski, I.; Schlag, W. Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. math., Volume 155 (2004), pp. 451-513 | DOI | MR | Zbl

Reed, M.; Simon, B., Academic Press, New York-London, 1979, 463 pages (ISBN: 0-12-585003-4) | MR | Zbl

Taylor, M., Applied Mathematical Sciences, 117, Springer, 1997, 608 pages | MR

Tzvetkov, N.; Visciglia, N. Well-posedness and scattering for NLS on d×𝕋 in the energy space (preprint arXiv:1409.3938, to appear in Revista Matematica )

Visciglia, N. On the decay of solutions to a class of defocusing NLS, Math. Res. Lett., Volume 16 (2009), pp. 919-926 (ISSN: 1073-2780) | DOI | MR | Zbl

Yajima, K. The quasiclassical limit of quantum scattering theory, Comm. Math. Phys., Volume 69 (1979), pp. 101-129 (ISSN: 0010-3616) | DOI | MR | Zbl

Yajima, K. The quasiclassical limit of quantum scattering theory. II. Long-range scattering, Duke Math. J., Volume 48 (1981), pp. 1-22 http://projecteuclid.org/euclid.dmj/1077314480 (ISSN: 0012-7094) | DOI | MR | Zbl

Zhang, J.; Zheng, J. Scattering theory for nonlinear Schrödinger equations with inverse-square potential, J. Funct. Anal., Volume 267 (2014), pp. 2907-2932 (ISSN: 0022-1236) | DOI | MR | Zbl

Cité par Sources :