Nous considérons l'équation de Schrödinger non linéaire en présence d'un potentiel à courte portée, en régime semi-classique. Lorsque la constante de Planck est fixée, une théorie du scattering permet d'établir qu'à la fois le potentiel et la non-linéarité sont négligeables en temps grand. Par ailleurs, pour des données sous la forme d'états cohérents, nous établissons une théorie du scattering pour l'équation d'enveloppe, elle-même non linéaire. Dans la limite semi-classique, les deux opérateurs de scattering peuvent être comparés, en faisant intervenir en outre la théorie du scattering classique, grâce à une estimation d'erreur uniforme en temps. Enfin, nous déduisons un phénomène de découplage en temps grand dans le cas d'un nombre fini d'états cohérents.
We consider the nonlinear Schrödinger equation with a short-range external potential, in a semi-classical scaling. We show that for fixed Planck constant, a complete scattering theory is available, showing that both the potential and the nonlinearity are asymptotically negligible for large time. Then, for data under the form of coherent state, we show that a scattering theory is also available for the approximate envelope of the propagated coherent state, which is given by a nonlinear equation. In the semi-classical limit, these two scattering operators can be compared in terms of classical scattering theory, thanks to a uniform in time error estimate. Finally, we infer a large time decoupling phenomenon in the case of finitely many initial coherent states.
DOI : 10.24033/asens.2294
Keywords: Nonlinear Schrödinger equation, scattering, semi-classical analysis, coherent states, time dependent harmonic oscillator.
Mot clés : Équation de Schrödinger non linéaire, scattering, analyse semi-classique, états cohérents, oscillateur harmonique dépendant du temps.
@article{ASENS_2016__49_3_711_0, author = {Carles, R\'emi}, title = {On semi-classical limit of nonlinear quantum scattering}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {711--756}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {3}, year = {2016}, doi = {10.24033/asens.2294}, mrnumber = {3503830}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2294/} }
TY - JOUR AU - Carles, Rémi TI - On semi-classical limit of nonlinear quantum scattering JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 711 EP - 756 VL - 49 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://archive.numdam.org/articles/10.24033/asens.2294/ DO - 10.24033/asens.2294 LA - en ID - ASENS_2016__49_3_711_0 ER -
%0 Journal Article %A Carles, Rémi %T On semi-classical limit of nonlinear quantum scattering %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 711-756 %V 49 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://archive.numdam.org/articles/10.24033/asens.2294/ %R 10.24033/asens.2294 %G en %F ASENS_2016__49_3_711_0
Carles, Rémi. On semi-classical limit of nonlinear quantum scattering. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 3, pp. 711-756. doi : 10.24033/asens.2294. http://archive.numdam.org/articles/10.24033/asens.2294/
High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., Volume 121 (1999), pp. 131-175 (ISSN: 0002-9327) | DOI | MR | Zbl
Long time semiclassical approximation of quantum flows: a proof of the Ehrenfest time, Asymptot. Anal., Volume 21 (1999), pp. 149-160 (ISSN: 0921-7134) | MR | Zbl
Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., Volume 203 (2003), pp. 519-549 (ISSN: 0022-1236) | DOI | MR | Zbl
Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J., Volume 53 (2004), pp. 1665-1680 (ISSN: 0022-2518) | DOI | MR | Zbl
Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J., Volume 111 (2002), pp. 223-252 | DOI | MR | Zbl
Some dispersive estimates for Schrödinger equations with repulsive potentials, J. Funct. Anal., Volume 236 (2006), pp. 1-24 | DOI | MR | Zbl
Global existence results for nonlinear Schrödinger equations with quadratic potentials, Discrete Contin. Dyn. Syst., Volume 13 (2005), pp. 385-398 | arXiv | DOI | MR | Zbl
Nonlinear Schrödinger equation with time dependent potential, Commun. Math. Sci., Volume 9 (2011), pp. 937-964 | DOI | MR | Zbl
, Courant Lecture Notes in Math., 10, New York University Courant Institute of Mathematical Sciences, 2003, 323 pages | MR | Zbl
Dispersive estimates for the Schrödinger equation in dimensions four and five, Asymptot. Anal., Volume 62 (2009), pp. 125-145 (ISSN: 0921-7134) | MR | Zbl
Scattering in the energy space for the NLS with variable coefficients (preprint arXiv:1502.00937, to appear in Math. Ann ) | MR
Large time behavior in nonlinear Schrödinger equation with time dependent potential, Commun. Math. Sci., Volume 13 (2015), pp. 443-460 | DOI | MR
Nonlinear coherent states and Ehrenfest time for Schrödinger equations, Commun. Math. Phys., Volume 301 (2011), pp. 443-472 | DOI | MR | Zbl
Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on , Comm. Pure Appl. Math., Volume 57 (2004), pp. 987-1014 (ISSN: 0010-3640) | DOI | MR | Zbl
, Theoretical and Mathematical Physics, Springer, Dordrecht, 2012, 415 pages (ISBN: 978-94-007-0195-3) | DOI | MR | Zbl
Propagator of a charged particle with a spin in uniform magnetic and perpendicular electric fields, Lett. Math. Phys., Volume 84 (2008), pp. 159-178 (ISSN: 0377-9017) | DOI | MR | Zbl
The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Anal. TMA, Volume 14 (1990), pp. 807-836 | DOI | MR | Zbl
Rapidly Decaying Solutions of the Nonlinear Schrödinger Equation, Comm. Math. Phys., Volume 147 (1992), pp. 75-100 | DOI | MR | Zbl
Endpoint Strichartz estimates for the magnetic Schrödinger equation, J. Funct. Anal., Volume 258 (2010), pp. 3227-3240 (ISSN: 0022-1236) | DOI | MR | Zbl
, Texts and Monographs in Physics, Springer Verlag, Berlin Heidelberg, 1997 |Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., Volume 15 (2008), pp. 1233-1250 (ISSN: 1073-2780) | DOI | MR | Zbl
Dispersive estimates for the Schrödinger equation for potentials in odd dimensions, Int. Math. Res. Not., Volume 2010 (2010), pp. 2532-2565 (ISSN: 1073-7928) | MR | Zbl
, International Series in Pure and Applied Physics, Maidenhead, McGraw-Hill Publishing Company, Ltd., 1965 | Zbl
Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., Volume 2 (2005), pp. 1-24 (ISSN: 0219-8916) | DOI | MR | Zbl
Remarks on the convergence of the Feynman path integrals, Duke Math. J., Volume 47 (1980), pp. 559-600 | DOI | MR | Zbl
Introduction aux équations de Schrödinger non linéaires (1995) (cours de DEA, http://sites.mathdoc.fr/PMO/PDF/G_GINIBRE-48.pdf )
Dispersive bounds for the three-dimensional Schrödinger equation with almost critical potentials, Geom. Funct. Anal., Volume 16 (2006), pp. 517-536 (ISSN: 1016-443X) | DOI | MR | Zbl
Quadratic Morawetz inequalities and asymptotic completeness in the energy space for nonlinear Schrödinger and Hartree equations, Quart. Appl. Math., Volume 68 (2010), pp. 113-134 (ISSN: 0033-569X) | DOI | MR | Zbl
On a class of nonlinear Schrödinger equations. II Scattering theory, general case, J. Funct. Anal., Volume 32 (1979), pp. 33-71 | DOI | MR | Zbl
The classical field limit of scattering theory for nonrelativistic many-boson systems. I, Comm. Math. Phys., Volume 66 (1979), pp. 37-76 http://projecteuclid.org/euclid.cmp/1103904940 (ISSN: 0010-3616) | DOI | MR | Zbl
Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl., Volume 64 (1985), pp. 363-401 (ISSN: 0021-7824) | MR | Zbl
Counterexamples of Strichartz inequalities for Schrödinger equations with repulsive potentials, Int. Math. Res. Not., Volume 2006 (2006) (ISSN: 1073-7928) | DOI | MR | Zbl
Semiclassical quantum mechanics. I. The limit for coherent states, Comm. Math. Phys., Volume 71 (1980), pp. 77-93 http://projecteuclid.org/getRecord?id=euclid.cmp/1103907396 (ISSN: 0010-3616) | MR
Semiclassical quantum mechanics. III. The large order asymptotics and more general states, Ann. Physics, Volume 135 (1981), pp. 58-70 (ISSN: 0003-4916) | DOI | MR
Coherent states for systems of -supercritical nonlinear Schrödinger equations, Comm. Partial Differential Equations, Volume 38 (2013), pp. 529-573 | DOI | MR | Zbl
Exponentially accurate semiclassical dynamics: propagation, localization, Ehrenfest times, scattering, and more general states, Ann. Henri Poincaré, Volume 1 (2000), pp. 837-883 (ISSN: 1424-0637) | DOI | MR | Zbl
A time-dependent Born-Oppenheimer approximation with exponentially small error estimates, Comm. Math. Phys., Volume 223 (2001), pp. 583-626 (ISSN: 0010-3616) | DOI | MR | Zbl
Scattering for a nonlinear Schrödinger equation with a potential, 2014 (preprint arXiv:1403.3944 ) | MR
Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z., Volume 219 (1995), pp. 413-449 (ISSN: 0025-5874) | DOI | MR | Zbl
A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., Volume 282 (2008), pp. 435-467 (ISSN: 0010-3616) | DOI | MR | Zbl
, Spectral and scattering theory and applications (Adv. Stud. Pure Math.), Volume 23, Math. Soc. Japan, Tokyo, 1994, pp. 223-238 | DOI | MR | Zbl
On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Diff. Eq., Volume 175 (2001), pp. 353-392 (ISSN: 0022-0396) | DOI | MR | Zbl
Endpoint Strichartz Estimates, Amer. J. Math., Volume 120 (1998), pp. 955-980 | DOI | MR | Zbl
Energy-critical NLS with quadratic potentials, Comm. Partial Differential Equations, Volume 34 (2009), pp. 1531-1565 (ISSN: 0360-5302) | DOI | MR | Zbl
Decay and scattering of solutions of a nonlinear Schrödinger equation, J. Funct. Anal., Volume 30 (1978), pp. 245-263 (ISSN: 0022-1236) | DOI | MR | Zbl
Absence of singular continuous spectrum for certain selfadjoint operators, Comm. Math. Phys., Volume 78 (1981), pp. 391-408 | DOI | MR | Zbl
Compactness at blow-up time for solutions of the critical nonlinear Schrödinger equation in 2D, Int. Math. Res. Not., Volume 1998 (1998), pp. 399-425 (ISSN: 1073-7928) | DOI | MR | Zbl
Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions 1 and 2, J. Funct. Anal., Volume 169 (1999), pp. 201-225 (ISSN: 0022-1236) | DOI | MR | Zbl
A semi-classical picture of quantum scattering, Ann. Sci. Éc. Norm. Sup., Volume 29 (1996), pp. 149-183 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Sup., Volume 42 (2009), pp. 261-290 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
, Graduate Texts in Math., 128, Springer, 1991 | MR | Zbl
Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. math., Volume 155 (2004), pp. 451-513 | DOI | MR | Zbl
, Academic Press, New York-London, 1979, 463 pages (ISBN: 0-12-585003-4) |, Applied Mathematical Sciences, 117, Springer, 1997, 608 pages | MR
Well-posedness and scattering for NLS on in the energy space (preprint arXiv:1409.3938, to appear in Revista Matematica )
On the decay of solutions to a class of defocusing NLS, Math. Res. Lett., Volume 16 (2009), pp. 919-926 (ISSN: 1073-2780) | DOI | MR | Zbl
The quasiclassical limit of quantum scattering theory, Comm. Math. Phys., Volume 69 (1979), pp. 101-129 (ISSN: 0010-3616) | DOI | MR | Zbl
The quasiclassical limit of quantum scattering theory. II. Long-range scattering, Duke Math. J., Volume 48 (1981), pp. 1-22 http://projecteuclid.org/euclid.dmj/1077314480 (ISSN: 0012-7094) | DOI | MR | Zbl
Scattering theory for nonlinear Schrödinger equations with inverse-square potential, J. Funct. Anal., Volume 267 (2014), pp. 2907-2932 (ISSN: 0022-1236) | DOI | MR | Zbl
Cité par Sources :