A two-phase free boundary problem for harmonic measure
[Un problème dans la frontière libre avec deux phases pour la mesure harmonique]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 4, pp. 859-905.

On étudie un problème dans la frontière libre avec deux phases, initialement examiné par Kenig et Toro [21], et on montre un résultat précis de régularité de Hölder. La difficulté essentielle est qu'il n'y a pas de conditions a priori de non-dégénérescence dans la condition de frontière libre. Par conséquent, nous devons déduire la non-dégénérescence en utilisant des formules de monotonie.

We study a 2-phase free boundary problem for harmonic measure first considered by Kenig and Toro [21] and prove a sharp Hölder regularity result. The central difficulty is that there is no a priori non-degeneracy in the free boundary condition. Thus we must establish non-degeneracy by means of monotonicity formulae.

DOI : 10.24033/asens.2297
Classification : 35R35, 42B37.
Keywords: Harmonic measure, free boundary problems, monotonicity formulas, two-phase problem.
Mot clés : Mesure harmonique, problèmes dans la frontière libre, formules de monotonie, problème avec deux phases.
@article{ASENS_2016__49_4_859_0,
     author = {Engelstein, Max},
     title = {A two-phase free boundary problem  for harmonic measure},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {859--905},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 49},
     number = {4},
     year = {2016},
     doi = {10.24033/asens.2297},
     mrnumber = {3552015},
     zbl = {1366.35245},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.2297/}
}
TY  - JOUR
AU  - Engelstein, Max
TI  - A two-phase free boundary problem  for harmonic measure
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2016
SP  - 859
EP  - 905
VL  - 49
IS  - 4
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://archive.numdam.org/articles/10.24033/asens.2297/
DO  - 10.24033/asens.2297
LA  - en
ID  - ASENS_2016__49_4_859_0
ER  - 
%0 Journal Article
%A Engelstein, Max
%T A two-phase free boundary problem  for harmonic measure
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 859-905
%V 49
%N 4
%I Société Mathématique de France. Tous droits réservés
%U http://archive.numdam.org/articles/10.24033/asens.2297/
%R 10.24033/asens.2297
%G en
%F ASENS_2016__49_4_859_0
Engelstein, Max. A two-phase free boundary problem  for harmonic measure. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 4, pp. 859-905. doi : 10.24033/asens.2297. http://archive.numdam.org/articles/10.24033/asens.2297/

Alt, H. W.; Caffarelli, L. A. Existence and regularity for a minimum problem with free boundary, J. reine angew. Math., Volume 325 (1981), pp. 105-144 (ISSN: 0075-4102) | MR | Zbl

Alt, H. W.; Caffarelli, L. A.; Friedman, A. Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc., Volume 282 (1984), pp. 431-461 (ISSN: 0002-9947) | DOI | MR | Zbl

Agmon, S.; Douglis, A.; Nirenberg, L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math., Volume 12 (1959), pp. 623-727 (ISSN: 0010-3640) | DOI | MR | Zbl

Agmon, S.; Douglis, A.; Nirenberg, L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math., Volume 17 (1964), pp. 35-92 (ISSN: 0010-3640) | DOI | MR | Zbl

Almgren, F. J. J., Minimal submanifolds and geodesics (Proc. Japan-United States Sem., Tokyo, 1977), North-Holland, Amsterdam-New York, 1979, pp. 1-6 | MR | Zbl

Badger, M. Harmonic polynomials and tangent measures of harmonic measure, Rev. Mat. Iberoam., Volume 27 (2011), pp. 841-870 (ISSN: 0213-2230) | DOI | MR | Zbl

Badger, M. Flat points in zero sets of harmonic polynomials and harmonic measure from two sides, J. Lond. Math. Soc., Volume 87 (2013), pp. 111-137 (ISSN: 0024-6107) | DOI | MR | Zbl

Bishop, C. J.; Carleson, L.; Garnett, J. B.; Jones, P. W. Harmonic measures supported on curves, Pacific J. Math., Volume 138 (1989), pp. 233-236 http://projecteuclid.org/euclid.pjm/1102650148 (ISSN: 0030-8730) | DOI | MR | Zbl

Caffarelli, L. A. A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free boundaries are C1,α , Rev. Mat. Iberoamericana, Volume 3 (1987), pp. 139-162 (ISSN: 0213-2230) | DOI | MR | Zbl

Caffarelli, L.; Salsa, S., Graduate Studies in Math., 68, Amer. Math. Soc., Providence, RI, 2005, 270 pages (ISBN: 0-8218-3784-2) | DOI | MR | Zbl

David, G.; Kenig, C.; Toro, T. Asymptotically optimally doubling measures and Reifenberg flat sets with vanishing constant, Comm. Pure Appl. Math., Volume 54 (2001), pp. 385-449 (ISSN: 0010-3640) | DOI | MR | Zbl

De Silva, D.; Ferrari, F.; Salsa, S. Two-phase problems with distributed sources: regularity of the free boundary, Anal. PDE, Volume 7 (2014), pp. 267-310 (ISSN: 2157-5045) | DOI | MR | Zbl

Gilbart, D.; Hörmander, L. Intermediate Schauder estimates, Arch. Rational Mech. Anal., Volume 74 (1980), pp. 297-318 | DOI | MR | Zbl

Garnett, J. B.; Marshall, D. E., New Mathematical Monographs, 2, Cambridge Univ. Press, Cambridge, 2005, 571 pages (ISBN: 978-0-521-47018-6; 0-521-47018-8) | DOI | MR | Zbl

Garofalo, N.; Petrosyan, A. Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem, Invent. math., Volume 177 (2009), pp. 415-461 (ISSN: 0020-9910) | DOI | MR | Zbl

Gilbart, D.; Trudinger, N., Grundl. math. Wiss., 224, Springer, 1977 | MR | Zbl

Jerison, D. Regularity of the Poisson kernel and free boundary problems, Colloq. Math., Volume 60/61 (1990), pp. 547-568 (ISSN: 0010-1354) | DOI | MR | Zbl

Jerison, D. S.; Kenig, C. E. Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. Math., Volume 46 (1982), pp. 80-147 (ISSN: 0001-8708) | DOI | MR | Zbl

Jones, P. W. Rectifiable sets and the traveling salesman problem, Invent. math., Volume 102 (1990), pp. 1-15 (ISSN: 0020-9910) | DOI | MR | Zbl

Kellogg, O. D., Grundl. math. Wiss., 31, Springer, Berlin-New York, 1967, 384 pages | MR | Zbl

Kinderlehrer, D.; Nirenberg, L. Regularity in free boundary problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 4 (1977), pp. 373-391 | Numdam | MR | Zbl

Kinderlehrer, D.; Nirenberg, L.; Spruck, J. Regularity in elliptic free boundary problems, J. Analyse Math., Volume 34 (1978), pp. 86-119 (ISSN: 0021-7670) | DOI | MR | Zbl

Kenig, C. E.; Preiss, D.; Toro, T. Boundary structure and size in terms of interior and exterior harmonic measures in higher dimensions, J. Amer. Math. Soc., Volume 22 (2009), pp. 771-796 (ISSN: 0894-0347) | DOI | MR | Zbl

Kinderlehrer, D.; Stampacchia, G., Pure and Applied Mathematics, 88, Academic Press, Inc., New York-London, 1980, 313 pages (ISBN: 0-12-407350-6) | MR | Zbl

Kenig, C. E.; Toro, T. Poisson kernel characterization of Reifenberg flat chord arc domains, Ann. Sci. École Norm. Sup., Volume 36 (2003), pp. 323-401 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Kenig, C.; Toro, T. Free boundary regularity below the continuous threshold: 2-phase problems, J. reine angew. Math., Volume 596 (2006), pp. 1-44 (ISSN: 0075-4102) | DOI | MR | Zbl

Kenig, C. E.; Toro, T. Harmonic measure on locally flat domains, Duke Math. J., Volume 87 (1997), pp. 509-551 (ISSN: 0012-7094) | DOI | MR | Zbl

Lewy, H. On the minimum number of domains in which the nodal lines of spherical harmonics divide the sphere, Comm. Partial Differential Equations, Volume 2 (1977), pp. 1233-1244 (ISSN: 0360-5302) | DOI | MR | Zbl

Maldonado, D. Notes on F. J. Almgren's frequency formula (2009) (online course notes, http://www.math.ksu.edu/~dmaldona/research/slides/NotesFreqFormula.pdf )

Monneau, R. Pointwise estimates for Laplace equation. Applications to the free boundary of the obstacle problem with Dini coefficients, J. Fourier Anal. Appl., Volume 15 (2009), pp. 279-335 (ISSN: 1069-5869) | DOI | MR | Zbl

Morrey, C. B. J., Die Grundl. math. Wiss., Band 130, Springer New York, Inc., New York, 1966, 506 pages | MR | Zbl

Pommerenke, C., Grundl. math. Wiss., 299, Springer, Berlin, 1992, 300 pages (ISBN: 3-540-54751-7) | DOI | MR | Zbl

Stein, E. M., Princeton Mathematical Series, No. 30, Princeton Univ. Press, Princeton, N.J., 1970, 290 pages | MR | Zbl

Cité par Sources :