On étudie un problème dans la frontière libre avec deux phases, initialement examiné par Kenig et Toro [21], et on montre un résultat précis de régularité de Hölder. La difficulté essentielle est qu'il n'y a pas de conditions a priori de non-dégénérescence dans la condition de frontière libre. Par conséquent, nous devons déduire la non-dégénérescence en utilisant des formules de monotonie.
We study a 2-phase free boundary problem for harmonic measure first considered by Kenig and Toro [21] and prove a sharp Hölder regularity result. The central difficulty is that there is no a priori non-degeneracy in the free boundary condition. Thus we must establish non-degeneracy by means of monotonicity formulae.
Keywords: Harmonic measure, free boundary problems, monotonicity formulas, two-phase problem.
Mot clés : Mesure harmonique, problèmes dans la frontière libre, formules de monotonie, problème avec deux phases.
@article{ASENS_2016__49_4_859_0, author = {Engelstein, Max}, title = {A two-phase free boundary problem for harmonic measure}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {859--905}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {4}, year = {2016}, doi = {10.24033/asens.2297}, mrnumber = {3552015}, zbl = {1366.35245}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2297/} }
TY - JOUR AU - Engelstein, Max TI - A two-phase free boundary problem for harmonic measure JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 859 EP - 905 VL - 49 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://archive.numdam.org/articles/10.24033/asens.2297/ DO - 10.24033/asens.2297 LA - en ID - ASENS_2016__49_4_859_0 ER -
%0 Journal Article %A Engelstein, Max %T A two-phase free boundary problem for harmonic measure %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 859-905 %V 49 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://archive.numdam.org/articles/10.24033/asens.2297/ %R 10.24033/asens.2297 %G en %F ASENS_2016__49_4_859_0
Engelstein, Max. A two-phase free boundary problem for harmonic measure. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 4, pp. 859-905. doi : 10.24033/asens.2297. http://archive.numdam.org/articles/10.24033/asens.2297/
Existence and regularity for a minimum problem with free boundary, J. reine angew. Math., Volume 325 (1981), pp. 105-144 (ISSN: 0075-4102) | MR | Zbl
Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc., Volume 282 (1984), pp. 431-461 (ISSN: 0002-9947) | DOI | MR | Zbl
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math., Volume 12 (1959), pp. 623-727 (ISSN: 0010-3640) | DOI | MR | Zbl
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math., Volume 17 (1964), pp. 35-92 (ISSN: 0010-3640) | DOI | MR | Zbl
, Minimal submanifolds and geodesics (Proc. Japan-United States Sem., Tokyo, 1977), North-Holland, Amsterdam-New York, 1979, pp. 1-6 | MR | Zbl
Harmonic polynomials and tangent measures of harmonic measure, Rev. Mat. Iberoam., Volume 27 (2011), pp. 841-870 (ISSN: 0213-2230) | DOI | MR | Zbl
Flat points in zero sets of harmonic polynomials and harmonic measure from two sides, J. Lond. Math. Soc., Volume 87 (2013), pp. 111-137 (ISSN: 0024-6107) | DOI | MR | Zbl
Harmonic measures supported on curves, Pacific J. Math., Volume 138 (1989), pp. 233-236 http://projecteuclid.org/euclid.pjm/1102650148 (ISSN: 0030-8730) | DOI | MR | Zbl
A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free boundaries are , Rev. Mat. Iberoamericana, Volume 3 (1987), pp. 139-162 (ISSN: 0213-2230) | DOI | MR | Zbl
, Graduate Studies in Math., 68, Amer. Math. Soc., Providence, RI, 2005, 270 pages (ISBN: 0-8218-3784-2) | DOI | MR | Zbl
Asymptotically optimally doubling measures and Reifenberg flat sets with vanishing constant, Comm. Pure Appl. Math., Volume 54 (2001), pp. 385-449 (ISSN: 0010-3640) | DOI | MR | Zbl
Two-phase problems with distributed sources: regularity of the free boundary, Anal. PDE, Volume 7 (2014), pp. 267-310 (ISSN: 2157-5045) | DOI | MR | Zbl
Intermediate Schauder estimates, Arch. Rational Mech. Anal., Volume 74 (1980), pp. 297-318 | DOI | MR | Zbl
, New Mathematical Monographs, 2, Cambridge Univ. Press, Cambridge, 2005, 571 pages (ISBN: 978-0-521-47018-6; 0-521-47018-8) | DOI | MR | Zbl
Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem, Invent. math., Volume 177 (2009), pp. 415-461 (ISSN: 0020-9910) | DOI | MR | Zbl
, Grundl. math. Wiss., 224, Springer, 1977 | MR | Zbl
Regularity of the Poisson kernel and free boundary problems, Colloq. Math., Volume 60/61 (1990), pp. 547-568 (ISSN: 0010-1354) | DOI | MR | Zbl
Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. Math., Volume 46 (1982), pp. 80-147 (ISSN: 0001-8708) | DOI | MR | Zbl
Rectifiable sets and the traveling salesman problem, Invent. math., Volume 102 (1990), pp. 1-15 (ISSN: 0020-9910) | DOI | MR | Zbl
, Grundl. math. Wiss., 31, Springer, Berlin-New York, 1967, 384 pages | MR | Zbl
Regularity in free boundary problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 4 (1977), pp. 373-391 | Numdam | MR | Zbl
Regularity in elliptic free boundary problems, J. Analyse Math., Volume 34 (1978), pp. 86-119 (ISSN: 0021-7670) | DOI | MR | Zbl
Boundary structure and size in terms of interior and exterior harmonic measures in higher dimensions, J. Amer. Math. Soc., Volume 22 (2009), pp. 771-796 (ISSN: 0894-0347) | DOI | MR | Zbl
, Pure and Applied Mathematics, 88, Academic Press, Inc., New York-London, 1980, 313 pages (ISBN: 0-12-407350-6) | MR | Zbl
Poisson kernel characterization of Reifenberg flat chord arc domains, Ann. Sci. École Norm. Sup., Volume 36 (2003), pp. 323-401 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Free boundary regularity below the continuous threshold: 2-phase problems, J. reine angew. Math., Volume 596 (2006), pp. 1-44 (ISSN: 0075-4102) | DOI | MR | Zbl
Harmonic measure on locally flat domains, Duke Math. J., Volume 87 (1997), pp. 509-551 (ISSN: 0012-7094) | DOI | MR | Zbl
On the minimum number of domains in which the nodal lines of spherical harmonics divide the sphere, Comm. Partial Differential Equations, Volume 2 (1977), pp. 1233-1244 (ISSN: 0360-5302) | DOI | MR | Zbl
Notes on F. J. Almgren's frequency formula (2009) (online course notes, http://www.math.ksu.edu/~dmaldona/research/slides/NotesFreqFormula.pdf )
Pointwise estimates for Laplace equation. Applications to the free boundary of the obstacle problem with Dini coefficients, J. Fourier Anal. Appl., Volume 15 (2009), pp. 279-335 (ISSN: 1069-5869) | DOI | MR | Zbl
, Die Grundl. math. Wiss., Band 130, Springer New York, Inc., New York, 1966, 506 pages | MR | Zbl
, Grundl. math. Wiss., 299, Springer, Berlin, 1992, 300 pages (ISBN: 3-540-54751-7) | DOI | MR | Zbl
, Princeton Mathematical Series, No. 30, Princeton Univ. Press, Princeton, N.J., 1970, 290 pages | MR | Zbl
Cité par Sources :