Nous étudions une version du biais de Chebyshev pour les courbes elliptiques sur le corps de fonctions d'une courbe lisse, propre, et géométriquement irréductible. Il s'agit de l'analogue, dans le cas des corps de fonctions, de travaux de Mazur, Sarnak, et Fiorilli. Le cadre géométrique dans lequel on se place permet d'établir inconditionnellement des résultats qui, sur les corps de nombres, nécessitent de supposer l'hypothèse de Riemann ou la conjecture de simplicité généralisée pour les zéros des fonctions
We study the prime number race for elliptic curves over the function field of a proper, smooth and geometrically connected curve over a finite field. This constitutes a function field analogue of prior work by Mazur, Sarnak and the second author. In this geometric setting, we can prove unconditional results whose counterparts in the number field case are conditional on a Riemann Hypothesis and a linear independence hypothesis on the zeros of the implied
DOI : 10.24033/asens.2308
Keywords: Chebyshev's bias, elliptic curves over function fields, summatory function of traces of Frobenius, linear independence of zeros of
Mot clés : Biais de Chebyshev, courbes elliptiques sur les corps de fonctions, fonction sommatoire de la trace de Frobenius, indépendance linéaire des zéros de fonctions
@article{ASENS_2016__49_5_1239_0, author = {Cha, Byungchul and Fiorilli, Daniel and Jouve, Florent}, title = {Prime number races for elliptic curves over function fields}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1239--1277}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {5}, year = {2016}, doi = {10.24033/asens.2308}, mrnumber = {3581815}, zbl = {1367.11085}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2308/} }
TY - JOUR AU - Cha, Byungchul AU - Fiorilli, Daniel AU - Jouve, Florent TI - Prime number races for elliptic curves over function fields JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 1239 EP - 1277 VL - 49 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - https://www.numdam.org/articles/10.24033/asens.2308/ DO - 10.24033/asens.2308 LA - en ID - ASENS_2016__49_5_1239_0 ER -
%0 Journal Article %A Cha, Byungchul %A Fiorilli, Daniel %A Jouve, Florent %T Prime number races for elliptic curves over function fields %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 1239-1277 %V 49 %N 5 %I Société Mathématique de France. Tous droits réservés %U https://www.numdam.org/articles/10.24033/asens.2308/ %R 10.24033/asens.2308 %G en %F ASENS_2016__49_5_1239_0
Cha, Byungchul; Fiorilli, Daniel; Jouve, Florent. Prime number races for elliptic curves over function fields. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 5, pp. 1239-1277. doi : 10.24033/asens.2308. https://www.numdam.org/articles/10.24033/asens.2308/
Limiting distributions of the classical error terms of prime number theory, Q. J. Math., Volume 65 (2014), pp. 743-780 | MR | Zbl
Experimental data for Goldfeld's conjecture over function fields, Exp. Math., Volume 21 (2012), pp. 362-374 | DOI | MR | Zbl
The average rank of elliptic curves. I, Invent. math., Volume 109 (1992), pp. 445-472 | DOI | MR | Zbl
Independence of the zeros of elliptic curve
Chebyshev's bias in function fields, Compos. Math., Volume 144 (2008), pp. 1351-1374 | DOI | MR | Zbl
La conjecture de Weil. II, Publ. Math. IHÉS, Volume 52 (1980), pp. 137-252 | DOI | Numdam | MR | Zbl
Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law, Acta Math., Volume 77 (1945), pp. 1-125 | DOI | MR | Zbl
The maximum size of
Elliptic curves of unbounded rank and Chebyshev's bias, Int. Math. Res. Not. IMRN, Volume 2014 (2014), pp. 4997-5024 | DOI | MR | Zbl
Highly biased prime number races, Algebra Number Theory, Volume 8 (2014), pp. 1733-1767 | DOI | MR | Zbl
Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities, J. reine angew. Math., Volume 676 (2013), pp. 121-212 | MR | Zbl
Artin's conjecture on the average, Mathematika, Volume 15 (1968), pp. 223-226 | DOI | MR | Zbl
Big symplectic or orthogonal monodromy modulo
The Mertens and Pólya conjectures in function fields (2012)
, Annals of Math. Studies, 150, Princeton Univ. Press, 2002, 249 pages | MR | Zbl
Finding meaning in error terms, Bull. Amer. Math. Soc. (N.S.), Volume 45 (2008), pp. 185-228 | DOI | MR | Zbl
, Probability and Mathematical Statistics, Academic Press Inc., Harcourt Brace Jovanovich Publishers, 1984 | MR | Zbl
Chebyshev's bias, Experiment. Math., Volume 3 (1994), pp. 173-197 | DOI | MR | Zbl
letter to Barry Mazur on Chebyshev's bias for
Elliptic curves with large rank over function fields, Ann. of Math., Volume 155 (2002), pp. 295-315 | DOI | MR | Zbl
Geometric non-vanishing, Invent. math., Volume 159 (2005), pp. 133-186 | DOI | MR | Zbl
Elliptic curves over function fields, Arithmetic of
Conductors of
- An annotated bibliography for comparative prime number theory, Expositiones Mathematicae, Volume 43 (2025) no. 3, p. 125644 | DOI:10.1016/j.exmath.2024.125644
- DISTRIBUTION OF FROBENIUS ELEMENTS IN FAMILIES OF GALOIS EXTENSIONS, Journal of the Institute of Mathematics of Jussieu, Volume 23 (2024) no. 3, p. 1169 | DOI:10.1017/s1474748023000154
- Exceptional biases in counting primes over function fields, Journal of the London Mathematical Society, Volume 109 (2024) no. 3 | DOI:10.1112/jlms.12876
- Bias in the distribution of holonomy on compact hyperbolic 3-manifolds, Mathematische Annalen, Volume 390 (2024) no. 4, p. 6213 | DOI:10.1007/s00208-024-02903-y
- Sums of two squares are strongly biased towards quadratic residues, Algebra Number Theory, Volume 17 (2023) no. 3, p. 775 | DOI:10.2140/ant.2023.17.775
- A new aspect of Chebyshev’s bias for elliptic curves over function fields, Proceedings of the American Mathematical Society (2023) | DOI:10.1090/proc/16461
- Low-lying zeros in families of elliptic curve L-functions over function fields, Finite Fields and Their Applications, Volume 84 (2022), p. 102096 | DOI:10.1016/j.ffa.2022.102096
- Inequities in the Shanks–Renyi prime number race over function fields, Mathematika, Volume 68 (2022) no. 3, p. 840 | DOI:10.1112/mtk.12150
- Explicit Kronecker–Weyl theorems and applications to prime number races, Research in Number Theory, Volume 8 (2022) no. 3 | DOI:10.1007/s40993-022-00349-2
- Chebyshev's bias for products of irreducible polynomials, Advances in Mathematics, Volume 392 (2021), p. 108040 | DOI:10.1016/j.aim.2021.108040
- Roots of L-functions of characters over function fields, generic linear independence and biases, Algebra Number Theory, Volume 14 (2020) no. 5, p. 1291 | DOI:10.2140/ant.2020.14.1291
- Limiting Properties of the Distribution of Primes in an Arbitrarily Large Number of Residue Classes, Canadian Mathematical Bulletin, Volume 63 (2020) no. 4, p. 837 | DOI:10.4153/s0008439520000089
Cité par 12 documents. Sources : Crossref