Poisson boundaries of monoidal categories
[Les frontières de Poisson des catégories monoïdales]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 4, pp. 927-972.

Etant données une C*-catégorie tensorielle rigide 𝒞 dont l'objet unité est simple ainsi qu'une mesure de probabilité μ sur l'ensemble de classes d'isomorphisme des objets simples, nous définissons la frontière de Poisson de (𝒞,μ). C'est une nouvelle C*-catégorie tensorielle 𝒫 dont l'objet unité n'est pas, en général, simple, couplée avec un foncteur unitaire tensoriel Π:𝒞𝒫. Notre résultat principal assure que si l'objet unité de 𝒫 est simple (ce qui se traduit par une condition sur une certaine marche aléatoire classique), alors Π est un foncteur unitaire tensoriel universel qui définit la fonction de dimension moyennable sur 𝒞. Les corollaires de ce théorème unifient différents résultats connus sur la moyennabilité des C*-catégories tensorielles, des groupes quantiques et des sous-facteurs.

Given a rigid C*-tensor category 𝒞 with simple unit and a probability measure μ on the set of isomorphism classes of its simple objects, we define the Poisson boundary of (𝒞,μ). This is a new C*-tensor category 𝒫, generally with nonsimple unit, together with a unitary tensor functor Π:𝒞𝒫. Our main result is that if 𝒫 has simple unit (which is a condition on some classical random walk), then Π is a universal unitary tensor functor defining the amenable dimension function on 𝒞. Corollaries of this theorem unify various results in the literature on amenability of C*-tensor categories, quantum groups, and subfactors.

DOI : 10.24033/asens.2335
Classification : 18D10; 60J50, 46L50.
Mots-clés : Monoidal category, random walk, Poisson boundary, catégorie monoïdale, marche aléatoire, frontière de Poisson.
@article{ASENS_2017__50_4_927_0,
     author = {Neshveyev, Sergey and Yamashita, Makoto},
     title = {Poisson boundaries  of monoidal categories},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {927--972},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 50},
     number = {4},
     year = {2017},
     doi = {10.24033/asens.2335},
     mrnumber = {3679617},
     zbl = {1386.18028},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.2335/}
}
TY  - JOUR
AU  - Neshveyev, Sergey
AU  - Yamashita, Makoto
TI  - Poisson boundaries  of monoidal categories
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2017
SP  - 927
EP  - 972
VL  - 50
IS  - 4
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://archive.numdam.org/articles/10.24033/asens.2335/
DO  - 10.24033/asens.2335
LA  - en
ID  - ASENS_2017__50_4_927_0
ER  - 
%0 Journal Article
%A Neshveyev, Sergey
%A Yamashita, Makoto
%T Poisson boundaries  of monoidal categories
%J Annales scientifiques de l'École Normale Supérieure
%D 2017
%P 927-972
%V 50
%N 4
%I Société Mathématique de France. Tous droits réservés
%U http://archive.numdam.org/articles/10.24033/asens.2335/
%R 10.24033/asens.2335
%G en
%F ASENS_2017__50_4_927_0
Neshveyev, Sergey; Yamashita, Makoto. Poisson boundaries  of monoidal categories. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 4, pp. 927-972. doi : 10.24033/asens.2335. http://archive.numdam.org/articles/10.24033/asens.2335/

Banica, T. Representations of compact quantum groups and subfactors, J. reine angew. Math., Volume 509 (1999), pp. 167-198 (ISSN: 0075-4102) | DOI | MR | Zbl

Bédos, E.; Conti, R.; Tuset, L. On amenability and co-amenability of algebraic quantum groups and their corepresentations, Canad. J. Math., Volume 57 (2005), pp. 17-60 (ISSN: 0008-414X) | DOI | MR | Zbl

Bisch, D. Bimodules, higher relative commutants and the fusion algebra associated to a subfactor, Operator algebras and their applications (Waterloo, ON, 1994/1995) (Fields Inst. Commun.), Volume 13, Amer. Math. Soc., Providence, RI (1997), pp. 13-63 | MR | Zbl

Connes, A. On the spatial theory of von Neumann algebras, J. Funct. Anal., Volume 35 (1980), pp. 153-164 (ISSN: 0022-1236) | DOI | MR | Zbl

De Commer, K.; Yamashita, M. Tannaka-Kreĭn duality for compact quantum homogeneous spaces. I. General theory, Theory Appl. Categ., Volume 28 (2013), pp. No. 31, 1099-1138 (ISSN: 1201-561X) | MR | Zbl

De Rijdt, A.; Vander Vennet, N. Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries, Ann. Inst. Fourier (Grenoble), Volume 60 (2010), pp. 169-216 http://aif.cedram.org/item?id=AIF_2010__60_1_169_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl

Furstenberg, H., Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972), Amer. Math. Soc., Providence, R.I., 1973, pp. 193-229 | MR | Zbl

Hiai, F.; Izumi, M. Amenability and strong amenability for fusion algebras with applications to subfactor theory, Internat. J. Math., Volume 9 (1998), pp. 669-722 (ISSN: 0129-167X) | DOI | MR | Zbl

Hiai, F. Minimizing indices of conditional expectations onto a subfactor, Publ. Res. Inst. Math. Sci., Volume 24 (1988), pp. 673-678 (ISSN: 0034-5318) | DOI | MR | Zbl

Hiai, F. Minimum index for subfactors and entropy. II, J. Math. Soc. Japan, Volume 43 (1991), pp. 347-379 (ISSN: 0025-5645) | DOI | MR | Zbl

Hamachi, T.; Kosaki, H. Orbital factor map, Ergodic Theory Dynam. Systems, Volume 13 (1993), pp. 515-532 (ISSN: 0143-3857) | DOI | MR | Zbl

Hayashi, T.; Yamagami, S. Amenable tensor categories and their realizations as AFD bimodules, J. Funct. Anal., Volume 172 (2000), pp. 19-75 (ISSN: 0022-1236) | DOI | MR | Zbl

Izumi, M.; Neshveyev, S.; Tuset, L. Poisson boundary of the dual of SU q(n) , Comm. Math. Phys., Volume 262 (2006), pp. 505-531 (ISSN: 0010-3616) | DOI | MR | Zbl

Izumi, M. Non-commutative Poisson boundaries and compact quantum group actions, Adv. Math., Volume 169 (2002), pp. 1-57 (ISSN: 0001-8708) | DOI | MR | Zbl

Izumi, M. Non-commutative Markov operators arising from subfactors, Operator algebras and applications (Adv. Stud. Pure Math.), Volume 38, Math. Soc. Japan, Tokyo (2004), pp. 201-217 | DOI | MR | Zbl

Izumi, M. E0-semigroups: around and beyond Arveson's work, J. Operator Theory, Volume 68 (2012), pp. 335-363 (ISSN: 0379-4024) | MR | Zbl

Kosaki, H. Extension of Jones' theory on index to arbitrary factors, J. Funct. Anal., Volume 66 (1986), pp. 123-140 (ISSN: 0022-1236) | DOI | MR | Zbl

Kaimanovich, V. A.; Vershik, A. M. Random walks on discrete groups: boundary and entropy, Ann. Probab., Volume 11 (1983), pp. 457-490 (ISSN: 0091-1798) | DOI | MR | Zbl

Longo, R.; Roberts, J. E. A theory of dimension, K -Theory, Volume 11 (1997), pp. 103-159 (ISSN: 0920-3036) | DOI | MR | Zbl

Müger, M. Tensor categories: a selective guided tour, Rev. Un. Mat. Argentina, Volume 51 (2010), pp. 95-163 (ISSN: 0041-6932) | MR | Zbl

Neshveyev, S. Duality theory for nonergodic actions, Münster J. Math., Volume 7 (2014), pp. 413-437 (ISSN: 1867-5778) | MR | Zbl

Neshveyev, S.; Størmer, E., Ergebn. Math. Grenzg., 50, Springer, 2006 (ISBN: 978-3-540-34670-8; 3-540-34670-8) | MR | Zbl

Neshveyev, S.; Tuset, L. The Martin boundary of a discrete quantum group, J. reine angew. Math., Volume 568 (2004), pp. 23-70 (ISSN: 0075-4102) | DOI | MR | Zbl

Neshveyev, S.; Tuset, L., Cours Spécialisés, 20, Société Mathématique de France, Paris, 2013 (ISBN: 978-2-85629-777-3) | MR | Zbl

Neshveyev, S.; Yamashita, M. Categorical duality for Yetter-Drinfeld algebras, Doc. Math., Volume 19 (2014), pp. 1105-1139 (ISSN: 1431-0635) | DOI | MR | Zbl

Neshveyev, S.; Yamashita, M. Classification of non-Kac compact quantum groups of SU (n) type, Int. Math. Res. Not. (2015) (rnv241v1-36) | DOI | MR | Zbl

Popa, S. Classification of amenable subfactors of type II, Acta Math., Volume 172 (1994), pp. 163-255 (ISSN: 0001-5962) | DOI | MR | Zbl

Popa, S., CBMS Regional Conference Series in Mathematics, 86, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1995 (ISBN: 0-8218-0321-2) | MR | Zbl

Pimsner, M.; Popa, S. Entropy and index for subfactors, Ann. Sci. École Norm. Sup., Volume 19 (1986), pp. 57-106 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Pimsner, M.; Popa, S. Finite-dimensional approximation of pairs of algebras and obstructions for the index, J. Funct. Anal., Volume 98 (1991), pp. 270-291 (ISSN: 0022-1236) | DOI | MR | Zbl

Rosenblatt, J. Ergodic and mixing random walks on locally compact groups, Math. Ann., Volume 257 (1981), pp. 31-42 (ISSN: 0025-5831) | DOI | MR | Zbl

Tomatsu, R. Amenable discrete quantum groups, J. Math. Soc. Japan, Volume 58 (2006), pp. 949-964 (ISSN: 0025-5645) | MR | Zbl

Tomatsu, R. A characterization of right coideals of quotient type and its application to classification of Poisson boundaries, Comm. Math. Phys., Volume 275 (2007), pp. 271-296 (ISSN: 0010-3616) | DOI | MR | Zbl

Yamagami, S. Frobenius duality in C*-tensor categories, J. Operator Theory, Volume 52 (2004), pp. 3-20 (ISSN: 0379-4024) | MR | Zbl

Yamagami, S. Notes on amenability of commutative fusion algebras, Positivity, Volume 3 (1999), pp. 377-388 (ISSN: 1385-1292) | DOI | MR | Zbl

Cité par Sources :