Brown's dihedral moduli space and freedom of the gravity operad
[Espace de modules dièdre de Brown et liberté de l'opérade de gravité]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 5, pp. 1081-1122.

Francis Brown a introduit une compactification partielle M0,nδ de l'espace de modules M0,n. Nous démontrons que la coopérade gravité, définie par la cohomologie (décalée en degré) des espaces M0,n, est colibre comme coopérade non symétrique anti-cyclique; de plus, les cogénérateurs sont donnés par les groupes de cohomologie de M0,nδ. La preuve construit une base explicite de H(M0,n) en termes de diagrammes. Cette base est compatible avec la cocomposition coopéradique, et admet un sous-ensemble qui est une base de H(M0,nδ). Nous montrons que nos résultats sont équivalents au fait que Hk(M0,nδ) a une structure de Hodge pure de poids 2k pour tout k, et nous donnons de plus dans notre article une seconde preuve, plus directe, de ce dernier fait. Cette seconde preuve utilise une construction itérative nouvelle et explicite de M0,nδ à partir de 𝔸n-3 par éclatements et enlèvements de diviseurs, qui est analogue aux constructions de Kapranov et Keel de M¯0,n, respectivement à partir de n-3 et (1)n-3.

Francis Brown introduced a partial compactification M0,nδ of the moduli space M0,n. We prove that the gravity cooperad, given by the degree-shifted cohomologies of the spaces M0,n, is cofree as a nonsymmetric anticyclic cooperad; moreover, the cogenerators are given by the cohomology groups of M0,nδ. As part of the proof we construct an explicit diagrammatically defined basis of H(M0,n) which is compatible with cooperadic cocomposition, and such that a subset forms a basis of H(M0,nδ). We show that our results are equivalent to the claim that Hk(M0,nδ) has a pure Hodge structure of weight 2k for all k, and we conclude our paper by giving an independent and completely different proof of this fact. The latter proof uses a new and explicit iterative construction of M0,nδ from 𝔸n-3 by blow-ups and removing divisors, analogous to Kapranov's and Keel's constructions of M¯0,n from n-3 and (1)n-3, respectively.

DOI : 10.24033/asens.2340
Classification : 14H10, 11G55, 55P48, 18D50, 14F40, 11M32
Keywords: Moduli of curves, mixed Hodge theory, operads, multiple zeta values, Koszul duality for operads.
Mot clés : Espaces de modules des courbes, théorie de Hodge mixte, opérades, valeurs zêta multiples, dualité de Koszul des opérades.
@article{ASENS_2017__50_5_1081_0,
     author = {Alm, Johan and Petersen, Dan},
     title = {Brown's dihedral moduli space and freedom of the gravity operad},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1081--1122},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 50},
     number = {5},
     year = {2017},
     doi = {10.24033/asens.2340},
     mrnumber = {3720025},
     zbl = {1401.14139},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.2340/}
}
TY  - JOUR
AU  - Alm, Johan
AU  - Petersen, Dan
TI  - Brown's dihedral moduli space and freedom of the gravity operad
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2017
SP  - 1081
EP  - 1122
VL  - 50
IS  - 5
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://archive.numdam.org/articles/10.24033/asens.2340/
DO  - 10.24033/asens.2340
LA  - en
ID  - ASENS_2017__50_5_1081_0
ER  - 
%0 Journal Article
%A Alm, Johan
%A Petersen, Dan
%T Brown's dihedral moduli space and freedom of the gravity operad
%J Annales scientifiques de l'École Normale Supérieure
%D 2017
%P 1081-1122
%V 50
%N 5
%I Société Mathématique de France. Tous droits réservés
%U http://archive.numdam.org/articles/10.24033/asens.2340/
%R 10.24033/asens.2340
%G en
%F ASENS_2017__50_5_1081_0
Alm, Johan; Petersen, Dan. Brown's dihedral moduli space and freedom of the gravity operad. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 5, pp. 1081-1122. doi : 10.24033/asens.2340. http://archive.numdam.org/articles/10.24033/asens.2340/

Arbarello, E.; Cornalba, M. Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves, J. Algebraic Geom., Volume 5 (1996), pp. 705-749 (ISSN: 1056-3911) | MR | Zbl

Alm, J. A universal A-infinity structure on Batalin-Vilkovisky algebras with multiple zeta value coefficients, Int. Math. Res. Not., Volume 2016 (2016), pp. 7414-7470 | DOI | MR | Zbl

Bergström, J.; Brown, F., Motives, quantum field theory, and pseudodifferential operators (Clay Math. Proc.), Volume 12, Amer. Math. Soc., Providence, RI, 2010, pp. 119-126 | MR | Zbl

Brown, F.; Carr, S.; Schneps, L. The algebra of cell-zeta values, Compos. Math., Volume 146 (2010), pp. 731-771 (ISSN: 0010-437X) | DOI | MR | Zbl

Brieskorn, E. Sur les groupes de tresses [d'après V. I. Arnol'd], Séminaire Bourbaki, vol. 1971/1972, exposé no 401, Lecture Notes in Math., Volume 317 (1973), pp. 21-44 | DOI | Numdam | MR | Zbl

Brown, F. C. S. Multiple zeta values and periods of moduli spaces 𝔐¯0,n , Ann. Sci. Éc. Norm. Supér., Volume 42 (2009), pp. 371-489 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Deligne, P. Théorie de Hodge. II, Publ. Math. IHÉS, Volume 40 (1971), pp. 5-57 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Deligne, P. La conjecture de Weil. II, Publ. Math. IHÉS, Volume 52 (1980), pp. 137-252 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Deligne, P.; Griffiths, P.; Morgan, J.; Sullivan, D. Real homotopy theory of Kähler manifolds, Invent. math., Volume 29 (1975), pp. 245-274 (ISSN: 0020-9910) | DOI | MR | Zbl

Dotsenko, V.; Shadrin, S.; Vallette, B. Givental group action on topological field theories and homotopy Batalin-Vilkovisky algebras, Adv. Math., Volume 236 (2013), pp. 224-256 (ISSN: 0001-8708) | DOI | MR | Zbl

Dupont, C.; Vallette, B. Brown's moduli spaces of curves and the gravity operad (preprint arXiv:1509.08840, to appear in Geometry and Topology ) | MR

Getzler, E., The moduli space of curves (Texel Island, 1994) (Progr. Math.), Volume 129, Birkhäuser, 1995, pp. 199-230 | DOI | MR | Zbl

Ginzburg, V.; Kapranov, M. Koszul duality for operads, Duke Math. J., Volume 76 (1994), pp. 203-272 (ISSN: 0012-7094) | DOI | MR | Zbl

Getzler, E.; Kapranov, M., Geometry, topology, & physics (Conf. Proc. Lecture Notes Geom. Topology, IV), Int. Press, Cambridge, MA, 1995, pp. 167-201 | MR | Zbl

Getzler, E.; Kapranov, M. Modular operads, Compos. math., Volume 110 (1998), pp. 65-126 (ISSN: 0010-437X) | DOI | MR | Zbl

Granåker, J. Strong homotopy properads, Int. Math. Res. Not., Volume 2007 (2007) | MR | Zbl

Guillén Santos, F.; Navarro, V.; Pascual, P.; Roig, A. Moduli spaces and formal operads, Duke Math. J., Volume 129 (2005), pp. 291-335 (ISSN: 0012-7094) | DOI | MR | Zbl

Gel'fand, I. M.; Zelevinskiĭ, A. V. Algebraic and combinatorial aspects of the general theory of hypergeometric functions, Funktsional. Anal. i Prilozhen., Volume 20 (1986), p. 17-34, 96 (ISSN: 0374-1990) | DOI | MR | Zbl

Hassett, B. Moduli spaces of weighted pointed stable curves, Adv. Math., Volume 173 (2003), pp. 316-352 (ISSN: 0001-8708) | DOI | MR | Zbl

Jambu, M.; Terao, H., Singularities (Iowa City, IA, 1986) (Contemp. Math.), Volume 90, Amer. Math. Soc., Providence, RI, 1989, pp. 147-162 | DOI | MR | Zbl

Kadeishvili, T. V. On the theory of homology of fiber spaces, Uspekhi Mat. Nauk, Volume 35 (1980), pp. 183-188 (ISSN: 0042-1316) | MR | Zbl

Kapranov, M., I. M. Gel'fand Seminar (Adv. Soviet Math.), Volume 16, Amer. Math. Soc., Providence, RI, 1993, pp. 29-110 | DOI | MR | Zbl

Keel, S. Intersection theory of moduli space of stable n-pointed curves of genus zero, Trans. Amer. Math. Soc., Volume 330 (1992), pp. 545-574 (ISSN: 0002-9947) | DOI | MR | Zbl

Li, L. Wonderful compactification of an arrangement of subvarieties, Michigan Math. J., Volume 58 (2009), pp. 535-563 (ISSN: 0026-2285) | DOI | MR | Zbl

Loday, J.-L.; Vallette, B., Grundl. math. Wiss., 346, Springer, Heidelberg, 2012, 634 pages (ISBN: 978-3-642-30361-6) | DOI | MR | Zbl

Menichi, L. Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras, K -Theory, Volume 32 (2004), pp. 231-251 (ISSN: 0920-3036) | DOI | MR | Zbl

Orlik, P.; Solomon, L. Combinatorics and topology of complements of hyperplanes, Invent. math., Volume 56 (1980), pp. 167-189 | DOI | MR | Zbl

Orlik, P.; Terao, H., Grundl. math. Wiss., 300, Springer, Berlin, 1992, 325 pages (ISBN: 3-540-55259-6) | DOI | MR | Zbl

Petersen, D. The structure of the tautological ring in genus one, Duke Math. J., Volume 163 (2014), pp. 777-793 (ISSN: 0012-7094) | DOI | MR | Zbl

Petersen, D. A spectral sequence for stratified spaces and configuration spaces of points, Geom. Topol., Volume 21 (2017), pp. 2527-2555 | DOI | MR | Zbl

Shapiro, B. Z. The mixed Hodge structure of the complement to an arbitrary arrangement of affine complex hyperplanes is pure, Proc. Amer. Math. Soc., Volume 117 (1993), pp. 931-933 (ISSN: 0002-9939) | DOI | MR | Zbl

Salvatore, P.; Tauraso, R. The operad Lie is free, J. Pure Appl. Algebra, Volume 213 (2009), pp. 224-230 | DOI | MR | Zbl

van der Laan, P. Operads up to homotopy and deformations of operad maps (preprint arXiv:math/0208041 )

Ward, B. C. Maurer-Cartan elements and cyclic operads, J. Noncommut. Geom., Volume 10 (2016), pp. 1403-1464 (ISSN: 1661-6952) | DOI | MR | Zbl

Cité par Sources :