Nous réfutons une forme forte du problème inverse de Galois régulier: il existe des groupes finis qui n'ont pas de réalisation régulière induisant toutes les extensions galoisiennes de groupe par spécialisation de en . Une propriété de relèvement bien plus faible est même infirmée pour ces groupes: deux réalisations existent qui ne peuvent être induites par des réalisations ayant le même type de ramification. Nos exemples de tels groupes incluent les groupes symétriques , , une infinité de , le Monstre.
Deux variantes de la question, où est remplacé par et , ont une réponse similaire, la seconde sous une « hypothèse de travail » liée à un problème de Fried-Schinzel.
Nous introduisons deux nouveaux outils: un théorème de comparaison entre les invariants d'une extension et ceux de celle obtenue en spécialisant en ; et, étant données deux extensions régulières galoisiennes de , un ensemble fini de -courbes qui disent si ces extensions ont une spécialisation commune .
We disprove a strong form of the Regular Inverse Galois Problem: there exist finite groups which do not have a -parametric extension, i.e., a regular realization that induces all Galois extensions of group by specializing to . A much weaker Lifting Property is even disproved for these groups: two realizations exist that cannot be induced by realizations with the same ramification type. Our examples of such groups include symmetric groups , , infinitely many , the Monster.
Two variants of the question with replaced by and are answered similarly, the second one under a diophantine “working hypothesis” going back to a problem of Fried-Schinzel.
We introduce two new tools: a comparison theorem between the invariants of an extension and those obtained by specializing to ; and, given two regular Galois extensions of , a finite set of -curves that say whether these extensions have a common specialization .
Keywords: Galois extensions, inverse Galois theory, specialization, parametric extensions, twisting.
Mot clés : Extensions galoisiennes, théorie inverse de Galois, spécialisation, extensions paramétriques, twisting.
@article{ASENS_2018__51_1_143_0, author = {D\`ebes, Pierre}, title = {Groups with no parametric {Galois} realizations}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {143--179}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {1}, year = {2018}, doi = {10.24033/asens.2353}, mrnumber = {3764040}, zbl = {1387.12003}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2353/} }
TY - JOUR AU - Dèbes, Pierre TI - Groups with no parametric Galois realizations JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 143 EP - 179 VL - 51 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - http://archive.numdam.org/articles/10.24033/asens.2353/ DO - 10.24033/asens.2353 LA - en ID - ASENS_2018__51_1_143_0 ER -
%0 Journal Article %A Dèbes, Pierre %T Groups with no parametric Galois realizations %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 143-179 %V 51 %N 1 %I Société Mathématique de France. Tous droits réservés %U http://archive.numdam.org/articles/10.24033/asens.2353/ %R 10.24033/asens.2353 %G en %F ASENS_2018__51_1_143_0
Dèbes, Pierre. Groups with no parametric Galois realizations. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 1, pp. 143-179. doi : 10.24033/asens.2353. http://archive.numdam.org/articles/10.24033/asens.2353/
On extensions of number fields obtained by specializing branched coverings, J. reine angew. Math., Volume 419 (1991), pp. 27-53 (ISSN: 0075-4102) | MR | Zbl
On the essential dimension of a finite group, Compos. math., Volume 106 (1997), pp. 159-179 (ISSN: 0010-437X) | DOI | MR | Zbl
Rational connectedness and Galois covers of the projective line, Ann. of Math., Volume 151 (2000), pp. 359-373 (ISSN: 0003-486X) | DOI | MR | Zbl
Selmer's conjecture and families of elliptic curves, Bull. London Math. Soc., Volume 14 (1982), pp. 345-348 (ISSN: 0024-6093) | DOI | MR | Zbl
Algebraic covers: field of moduli versus field of definition, Ann. Sci. École Norm. Sup., Volume 30 (1997), pp. 303-338 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Reduction and specialization of polynomials, Acta Arith., Volume 172 (2016), pp. 175-197 (ISSN: 0065-1036) | MR | Zbl
On the Malle conjecture and the self-twisted cover, Israel J. Math., Volume 218 (2017), pp. 101-131 (ISSN: 0021-2172) | DOI | MR | Zbl
Galois covers with prescribed fibers: the Beckmann-Black problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 28 (1999), pp. 273-286 (ISSN: 0391-173X) | Numdam | MR | Zbl
Galois covers and the Hilbert-Grunwald property, Ann. Inst. Fourier (Grenoble), Volume 62 (2012), pp. 989-1013 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Specialization results in Galois theory, Trans. Amer. Math. Soc., Volume 365 (2013), pp. 5259-5275 (ISSN: 0002-9947) | DOI | MR | Zbl
, Ergebn. Math. Grenzg., 11, Springer, Berlin, 2004, 458 pages (ISBN: 3-540-16640-8) | MR | Zbl
On a theorem of Ritt and related Diophantine problems, J. reine angew. Math., Volume 264 (1973), pp. 40-55 (ISSN: 0075-4102) | MR | Zbl
, Lecture Notes in Math., 208, Springer, Berlin-New York, 1971, 133 pages | MR | Zbl
On the maximum orders of elements of finite almost simple groups and primitive permutation groups, Trans. Amer. Math. Soc., Volume 367 (2015), pp. 7665-7694 (ISSN: 0002-9947) | DOI | MR | Zbl
, Lecture Notes in Math., 224, Springer, 1971
, Number theory and its applications (Kyoto, 1997) (Dev. Math.), Volume 2, Kluwer Acad. Publ., Dordrecht, 1999, pp. 165-181 | MR | Zbl
Computation of some moduli spaces of covers and explicit and regular -extensions with totally real fibers, Pacific J. Math., Volume 211 (2003), pp. 81-99 (ISSN: 0030-8730) | DOI | MR | Zbl
, Mathematical Sciences Research Institute Publications, 45, Cambridge Univ. Press, Cambridge, 2002, 258 pages (ISBN: 0-521-81998-9) | MR | Zbl
Recherches sur les substitutions, J. Liouville, Volume 17 (1872), pp. 351-367 | JFM | Numdam
On parametric extensions over number fields (preprint arXiv:1602.06706, to appear in Ann. Sc. Nor. Sup. di Pisa Cl. di Sci ) | MR
Twists of super elliptic curves without rational points (to appear in Int. Math. Res. Not ) | MR
Spécialisations de revêtements et théorie inverse de Galois (2013)
Parametric Galois extensions, J. Algebra, Volume 422 (2015), pp. 187-222 (ISSN: 0021-8693) | DOI | MR | Zbl
Specialization results and ramification conditions, Israel J. Math., Volume 214 (2016), pp. 621-650 (ISSN: 0021-2172) | DOI | MR | Zbl
Quadratic Diophantine equations with parameters, Acta Arith., Volume 37 (1980), pp. 133-141 (ISSN: 0065-1036) | DOI | MR | Zbl
, Encyclopedia of Mathematics and its Applications, 77, Cambridge Univ. Press, Cambridge, 2000, 558 pages (ISBN: 0-521-66225-7) | MR | Zbl
, University of Michigan Press, Ann Arbor, Mich., 1982, 250 pages (ISBN: 0-472-08026-1) |A conjecture concerning rational points on cubic curves, Math. Scand., Volume 2 (1954), pp. 49-54 (ISSN: 0025-5521) | DOI | MR | Zbl
, Research Notes in Math., 1, Jones and Bartlett Publishers, Boston, MA, 1992, 117 pages (ISBN: 0-86720-210-6) | MR | Zbl
Some finite groups which appear as , where , J. Algebra, Volume 89 (1984), pp. 437-499 (ISSN: 0021-8693) | DOI | MR | Zbl
Cité par Sources :