Groups with no parametric Galois realizations
[Groupes sans réalisations galoisiennes paramétriques]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 1, pp. 143-179.

Nous réfutons une forme forte du problème inverse de Galois régulier: il existe des groupes finis G qui n'ont pas de réalisation régulière F/(T) induisant toutes les extensions galoisiennes L/(U) de groupe G par spécialisation de T en f(U)(U). Une propriété de relèvement bien plus faible est même infirmée pour ces groupes: deux réalisations L/(U) existent qui ne peuvent être induites par des réalisations ayant le même type de ramification. Nos exemples de tels groupes G incluent les groupes symétriques Sn, n6, une infinité de PSL 2(𝔽p), le Monstre.

Deux variantes de la question, où (U) est remplacé par (U) et , ont une réponse similaire, la seconde sous une « hypothèse de travail » liée à un problème de Fried-Schinzel.

Nous introduisons deux nouveaux outils: un théorème de comparaison entre les invariants d'une extension F/(T) et ceux de celle obtenue en spécialisant T en f(U)(U); et, étant données deux extensions régulières galoisiennes de k(T), un ensemble fini de k(U)-courbes qui disent si ces extensions ont une spécialisation commune E/k.

We disprove a strong form of the Regular Inverse Galois Problem: there exist finite groups G which do not have a (U)-parametric extension, i.e., a regular realization F/(T) that induces all Galois extensions L/(U) of group G by specializing T to f(U)(U). A much weaker Lifting Property is even disproved for these groups: two realizations L/(U) exist that cannot be induced by realizations with the same ramification type. Our examples of such groups G include symmetric groups Sn, n6, infinitely many PSL 2(𝔽p), the Monster.

Two variants of the question with (U) replaced by (U) and are answered similarly, the second one under a diophantine “working hypothesis” going back to a problem of Fried-Schinzel.

We introduce two new tools: a comparison theorem between the invariants of an extension F/(T) and those obtained by specializing T to f(U)(U); and, given two regular Galois extensions of k(T), a finite set of k(U)-curves that say whether these extensions have a common specialization E/k.

DOI : 10.24033/asens.2353
Classification : 12F12, 11R58, 14E20; 14E22, 12E30, 11Gxx.
Keywords: Galois extensions, inverse Galois theory, specialization, parametric extensions, twisting.
Mot clés : Extensions galoisiennes, théorie inverse de Galois, spécialisation, extensions paramétriques, twisting.
@article{ASENS_2018__51_1_143_0,
     author = {D\`ebes, Pierre},
     title = {Groups with no parametric  {Galois} realizations},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {143--179},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 51},
     number = {1},
     year = {2018},
     doi = {10.24033/asens.2353},
     mrnumber = {3764040},
     zbl = {1387.12003},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.2353/}
}
TY  - JOUR
AU  - Dèbes, Pierre
TI  - Groups with no parametric  Galois realizations
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2018
SP  - 143
EP  - 179
VL  - 51
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://archive.numdam.org/articles/10.24033/asens.2353/
DO  - 10.24033/asens.2353
LA  - en
ID  - ASENS_2018__51_1_143_0
ER  - 
%0 Journal Article
%A Dèbes, Pierre
%T Groups with no parametric  Galois realizations
%J Annales scientifiques de l'École Normale Supérieure
%D 2018
%P 143-179
%V 51
%N 1
%I Société Mathématique de France. Tous droits réservés
%U http://archive.numdam.org/articles/10.24033/asens.2353/
%R 10.24033/asens.2353
%G en
%F ASENS_2018__51_1_143_0
Dèbes, Pierre. Groups with no parametric  Galois realizations. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 1, pp. 143-179. doi : 10.24033/asens.2353. http://archive.numdam.org/articles/10.24033/asens.2353/

Beckmann, S. On extensions of number fields obtained by specializing branched coverings, J. reine angew. Math., Volume 419 (1991), pp. 27-53 (ISSN: 0075-4102) | MR | Zbl

Buhler, J.; Reichstein, Z. On the essential dimension of a finite group, Compos. math., Volume 106 (1997), pp. 159-179 (ISSN: 0010-437X) | DOI | MR | Zbl

Colliot-Thélène, J.-L. Rational connectedness and Galois covers of the projective line, Ann. of Math., Volume 151 (2000), pp. 359-373 (ISSN: 0003-486X) | DOI | MR | Zbl

Cassels, J. W. S.; Schinzel, A. Selmer's conjecture and families of elliptic curves, Bull. London Math. Soc., Volume 14 (1982), pp. 345-348 (ISSN: 0024-6093) | DOI | MR | Zbl

Dèbes, P.; Douai, J.-C. Algebraic covers: field of moduli versus field of definition, Ann. Sci. École Norm. Sup., Volume 30 (1997), pp. 303-338 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Dèbes, P. Reduction and specialization of polynomials, Acta Arith., Volume 172 (2016), pp. 175-197 (ISSN: 0065-1036) | MR | Zbl

Dèbes, P. On the Malle conjecture and the self-twisted cover, Israel J. Math., Volume 218 (2017), pp. 101-131 (ISSN: 0021-2172) | DOI | MR | Zbl

Dèbes, P. Galois covers with prescribed fibers: the Beckmann-Black problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 28 (1999), pp. 273-286 (ISSN: 0391-173X) | Numdam | MR | Zbl

Dèbes, P.; Ghazi, N. Galois covers and the Hilbert-Grunwald property, Ann. Inst. Fourier (Grenoble), Volume 62 (2012), pp. 989-1013 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl

Dèbes, P.; Legrand, F. Specialization results in Galois theory, Trans. Amer. Math. Soc., Volume 365 (2013), pp. 5259-5275 (ISSN: 0002-9947) | DOI | MR | Zbl

Fried, M. D.; Jarden, M., Ergebn. Math. Grenzg., 11, Springer, Berlin, 2004, 458 pages (ISBN: 3-540-16640-8) | MR | Zbl

Fried, M. On a theorem of Ritt and related Diophantine problems, J. reine angew. Math., Volume 264 (1973), pp. 40-55 (ISSN: 0075-4102) | MR | Zbl

Grothendieck, A.; Murre, J. P., Lecture Notes in Math., 208, Springer, Berlin-New York, 1971, 133 pages | MR | Zbl

Guest, S.; Morris, J.; Praeger, C. E.; Spiga, P. On the maximum orders of elements of finite almost simple groups and primitive permutation groups, Trans. Amer. Math. Soc., Volume 367 (2015), pp. 7665-7694 (ISSN: 0002-9947) | DOI | MR | Zbl

Grothendieck, A., Lecture Notes in Math., 224, Springer, 1971

Hashimoto, K.-I.; Miyake, K., Number theory and its applications (Kyoto, 1997) (Dev. Math.), Volume 2, Kluwer Acad. Publ., Dordrecht, 1999, pp. 165-181 | MR | Zbl

Hallouin, E.; Riboulet-Deyris, E. Computation of some moduli spaces of covers and explicit 𝒮n and 𝒜n regular (T)-extensions with totally real fibers, Pacific J. Math., Volume 211 (2003), pp. 81-99 (ISSN: 0030-8730) | DOI | MR | Zbl

Jensen, C. U.; Ledet, A.; Yui, N., Mathematical Sciences Research Institute Publications, 45, Cambridge Univ. Press, Cambridge, 2002, 258 pages (ISBN: 0-521-81998-9) | MR | Zbl

Jordan, C. Recherches sur les substitutions, J. Liouville, Volume 17 (1872), pp. 351-367 | JFM | Numdam

Legrand, F. On parametric extensions over number fields (preprint arXiv:1602.06706, to appear in Ann. Sc. Nor. Sup. di Pisa Cl. di Sci ) | MR

Legrand, F. Twists of super elliptic curves without rational points (to appear in Int. Math. Res. Not ) | MR

Legrand, F. Spécialisations de revêtements et théorie inverse de Galois (2013)

Legrand, F. Parametric Galois extensions, J. Algebra, Volume 422 (2015), pp. 187-222 (ISSN: 0021-8693) | DOI | MR | Zbl

Legrand, F. Specialization results and ramification conditions, Israel J. Math., Volume 214 (2016), pp. 621-650 (ISSN: 0021-2172) | DOI | MR | Zbl

Lewis, D. J.; Schinzel, A. Quadratic Diophantine equations with parameters, Acta Arith., Volume 37 (1980), pp. 133-141 (ISSN: 0065-1036) | DOI | MR | Zbl

Schinzel, A., Encyclopedia of Mathematics and its Applications, 77, Cambridge Univ. Press, Cambridge, 2000, 558 pages (ISBN: 0-521-66225-7) | MR | Zbl

Schinzel, A., University of Michigan Press, Ann Arbor, Mich., 1982, 250 pages (ISBN: 0-472-08026-1) | MR | Zbl

Selmer, E. S. A conjecture concerning rational points on cubic curves, Math. Scand., Volume 2 (1954), pp. 49-54 (ISSN: 0025-5521) | DOI | MR | Zbl

Serre, J.-P., Research Notes in Math., 1, Jones and Bartlett Publishers, Boston, MA, 1992, 117 pages (ISBN: 0-86720-210-6) | MR | Zbl

Thompson, J. G. Some finite groups which appear as Gal L/K, where K𝐐(μn) , J. Algebra, Volume 89 (1984), pp. 437-499 (ISSN: 0021-8693) | DOI | MR | Zbl

Cité par Sources :