Notre résultat principal est une expression explicite de la métrique de pression sur la composante de Hitchin de l'espace des représentations du groupe fondamental d'une surface dans le long du lieu fuchsien. Cette formule utilise une paramétrisation de l'espace tangent à la composante de Hitchin en terme de différentielles holomorphes, et elle s'exprime explicitement en fonction du produit de Petersson. Au passage, nous établissons des relations qui généralisent les résultats classiques de la théorie de Teichmüller, tels que la formule de Gardiner, le rapport entre fonctions de longueur et déformations de Fenchel-Nielsen et les variations des birapports.
The main result is an explicit expression for the Pressure Metric on the Hitchin component of surface group representations into along the Fuchsian locus. The expression is in terms of a parametrization of the tangent space by holomorphic differentials, and it gives a precise relationship with the Petersson pairing. Along the way, variational formulas are established that generalize results from classical Teichmüller theory, such as Gardiner's formula, the relationship between length functions and Fenchel-Nielsen deformations, and variations of cross ratios.
DOI : 10.24033/asens.2359
Keywords: Pressure metric, higher Teichmüller space, Gardiner formula, Higgs bundles, Hitchin components.
Mot clés : Métrique de pression, espace de Teichmüller généralisé, formule de Gardiner, fibrés de Higgs, composantes de Hitchin.
@article{ASENS_2018__51_2_487_0, author = {Labourie, Fran\c{c}ois and Wentworth, Richard}, title = {Variations along the {Fuchsian} locus}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {487--547}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {2}, year = {2018}, doi = {10.24033/asens.2359}, mrnumber = {3798306}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2359/} }
TY - JOUR AU - Labourie, François AU - Wentworth, Richard TI - Variations along the Fuchsian locus JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 487 EP - 547 VL - 51 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - http://archive.numdam.org/articles/10.24033/asens.2359/ DO - 10.24033/asens.2359 LA - en ID - ASENS_2018__51_2_487_0 ER -
%0 Journal Article %A Labourie, François %A Wentworth, Richard %T Variations along the Fuchsian locus %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 487-547 %V 51 %N 2 %I Société Mathématique de France. Tous droits réservés %U http://archive.numdam.org/articles/10.24033/asens.2359/ %R 10.24033/asens.2359 %G en %F ASENS_2018__51_2_487_0
Labourie, François; Wentworth, Richard. Variations along the Fuchsian locus. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 2, pp. 487-547. doi : 10.24033/asens.2359. http://archive.numdam.org/articles/10.24033/asens.2359/
The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, Volume 308 (1983), pp. 523-615 (ISSN: 0080-4614) | DOI | MR | Zbl
Some remarks on Teichmüller's space of Riemann surfaces, Ann. of Math., Volume 74 (1961), pp. 171-191 (ISSN: 0003-486X) | DOI | MR | Zbl
Cyclic Higgs bundles and the affine Toda equations, Geom. Dedicata, Volume 174 (2015), pp. 25-42 (ISSN: 0046-5755) | DOI | MR | Zbl
The pressure metric for Anosov representations, Geom. Funct. Anal., Volume 25 (2015), pp. 1089-1179 (ISSN: 1016-443X) | DOI | MR
Opers (preprint arXiv:math/0501398 )
Surface group representations and -Higgs bundles, J. Differential Geom., Volume 64 (2003), pp. 111-170 http://projecteuclid.org/euclid.jdg/1090426889 (ISSN: 0022-040X) | MR | Zbl
Hausdorff dimension and the Weil-Petersson extension to quasifuchsian space, Geom. Topol., Volume 14 (2010), pp. 799-831 (ISSN: 1465-3060) | DOI | MR | Zbl
An extension of the Weil-Petersson metric to quasi-Fuchsian space, Math. Ann., Volume 341 (2008), pp. 927-943 (ISSN: 0025-5831) | DOI | MR | Zbl
Spectral curves, opers and integrable systems, Publ. Math. IHÉS, Volume 94 (2001), pp. 87-159 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Flat -bundles with canonical metrics, J. Differential Geom., Volume 28 (1988), pp. 361-382 http://projecteuclid.org/euclid.jdg/1214442469 (ISSN: 0022-040X) | MR | Zbl
Higgs bundles and opers, ISBN: 978-0549-57408-8, ProQuest LLC, Ann Arbor, MI (2008) http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3309421 | MR
Lectures on classical -algebras, Acta Applicandae Mathematicae, Volume 47 (1997), pp. 243-321 | DOI | MR | Zbl
Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc., Volume 55 (1987), pp. 127-131 (ISSN: 0024-6115) | DOI | MR | Zbl
Equations of Korteweg-de Vries type, and simple Lie algebras, Dokl. Akad. Nauk SSSR, Volume 258 (1981), pp. 11-16 (ISSN: 0002-3264) | MR | Zbl
Schiffer's interior variation and quasiconformal mapping, Duke Math. J., Volume 42 (1975), pp. 371-380 http://projecteuclid.org/euclid.dmj/1077311057 (ISSN: 0012-7094) | DOI | MR | Zbl
The symplectic nature of fundamental groups of surfaces, Adv. in Math., Volume 54 (1984), pp. 200-225 (ISSN: 0001-8708) | DOI | MR | Zbl
Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. math., Volume 85 (1986), pp. 263-302 (ISSN: 0020-9910) | DOI | MR | Zbl
Euler-Poincaré flows on opers and integrability, Acta Appl. Math., Volume 95 (2007), pp. 1-30 (ISSN: 0167-8019) | DOI | MR | Zbl
Anosov representations: domains of discontinuity and applications, Invent. math., Volume 190 (2012), pp. 357-438 (ISSN: 0020-9910) | DOI | MR | Zbl
Monodromy groups and Poincaré series, Bull. Amer. Math. Soc., Volume 84 (1978), pp. 339-376 (ISSN: 0002-9904) | DOI | MR | Zbl
, Surveys in differential geometry 2016. Advances in geometry and mathematical physics (Surv. Differ. Geom.), Volume 21, Int. Press, Somerville, MA, 2016, pp. 139-163 | MR
The self-duality equations on a Riemann surface, Proc. London Math. Soc., Volume 55 (1987), pp. 59-126 (ISSN: 0024-6115) | DOI | MR | Zbl
Lie groups and Teichmüller space, Topology, Volume 31 (1992), pp. 449-473 (ISSN: 0040-9383) | DOI | MR | Zbl
The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., Volume 81 (1959), pp. 973-1032 (ISSN: 0002-9327) | DOI | MR | Zbl
Anosov flows, surface groups and curves in projective space, Invent. math., Volume 165 (2006), pp. 51-114 (ISSN: 0020-9910) | DOI | MR | Zbl
Cross ratios, surface groups, and diffeomorphisms of the circle, Publ. Math. IHÉS, Volume 106 (2007), pp. 139-213 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Existence d'applications harmoniques tordues à valeurs dans les variétés à courbure négative, Proc. Amer. Math. Soc., Volume 111 (1991), pp. 877-882 (ISSN: 0002-9939) | MR | Zbl
Decision problems, complexity, traces, and representations, Groups Geom. Dyn., Volume 11 (2017), pp. 165-188 (ISSN: 1661-7207) | DOI | MR
Thermodynamics, dimension and the Weil-Petersson metric, Invent. math., Volume 173 (2008), pp. 365-425 (ISSN: 0020-9910) | DOI | MR | Zbl
Moduli space of semistable pairs on a curve, Proc. London Math. Soc., Volume 62 (1991), pp. 275-300 (ISSN: 0024-6115) | DOI | MR | Zbl
The Dynkin index and -subalgebras of simple Lie algebras, J. Algebra, Volume 430 (2015), pp. 15-25 (ISSN: 0021-8693) | DOI | MR
Konstruktion der sämtlichen Lösungen einer Riemannschen Funktionalgleichung durch Dirichletreihen mit Eulerscher Produktentwicklung I, Math. Ann., Volume 116 (1939), pp. 401-412 (ISSN: 0025-5831) | DOI | MR | Zbl
The geometry of the KdV equation, Internat. J. Modern Phys. A, Volume 6 (1991), pp. 2859-2869 Topological methods in quantum field theory (Trieste, 1990) (ISSN: 0217-751X) | DOI | MR | Zbl
Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc., Volume 1 (1988), pp. 867-918 (ISSN: 0894-0347) | DOI | MR | Zbl
Higgs bundles and local systems, Publ. Math. IHÉS, Volume 75 (1992), pp. 5-95 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Moduli of representations of the fundamental group of a smooth projective variety. I, Publ. Math. IHÉS, Volume 79 (1994), pp. 47-129 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Moduli of representations of the fundamental group of a smooth projective variety. II, Publ. Math. IHÉS, Volume 80 (1994), pp. 5-79 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Algèbres et équations non linéaires, Séminaire Bourbaki, vol. 1997/1998, exposé no 839, Astérisque, Volume 252 (1998), pp. 105-129 (ISSN: 0303-1179) | Numdam | MR | Zbl
Remarks on the cohomology of groups, Ann. of Math., Volume 80 (1964), pp. 149-157 (ISSN: 0003-486X) | DOI | MR | Zbl
, Geometry and quantization of moduli spaces (Adv. Courses Math. CRM Barcelona), Birkhäuser, 2016, pp. 165-219 | DOI | MR
On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math., Volume 117 (1983), pp. 207-234 (ISSN: 0003-486X) | DOI | MR | Zbl
Thurston's Riemannian metric for Teichmüller space, J. Differential Geom., Volume 23 (1986), pp. 143-174 http://projecteuclid.org/euclid.jdg/1214440024 (ISSN: 0022-040X) | MR | Zbl
The Teichmüller theory of harmonic maps, J. Differential Geom., Volume 29 (1989), pp. 449-479 http://projecteuclid.org/euclid.jdg/1214442885 (ISSN: 0022-040X) | MR | Zbl
Cité par Sources :