Optimal Sobolev regularity of roots of polynomials
[Régularité optimale de type Sobolev des racines d'un polynôme]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 5, pp. 1343-1387.

Nous étudions la régularité des racines d'un polynôme complexe univarié dont les coefficients varient de façon lisse. Nous montrons que tout choix continu de racines d'une Cn-1,1-courbe de polynômes unitaires de degré n est localement absolument continu avec ses dérivées localement p-intégrables pour tout 1p<n/(n-1), uniformément par rapport aux coefficients. Ce résultat est optimal : en général, les dérivées de racines d'une courbe lisse de polynômes unitaires de degré n ne sont pas localement n/(n-1)-intégrables et la variation des racines peut être localement non bornée si les coefficients sont de classe Cn-1,α pour α<1. Nous montrons aussi une généralisation des inégalités de Glaeser d'ordre supérieur à la Ghisi et Gobbino. Nous donnons trois applications des résultats principaux : résolution locale d'un système d'équations pseudo-différentielles, un théorème de relèvement pour les applications à valeurs dans l'espace des orbites d'une représentation d'un groupe fini et une condition suffisante pour qu'une fonction multivaluée soit de classe de Sobolev W1,p au sens d'Almgren.

We study the regularity of the roots of complex univariate polynomials whose coefficients depend smoothly on parameters. We show that any continuous choice of a root of a Cn-1,1-curve of monic polynomials of degree n is locally absolutely continuous with locally p-integrable derivatives for every 1p<n/(n-1), uniformly with respect to the coefficients. This result is optimal: in general, the derivatives of the roots of a smooth curve of monic polynomials of degree n are not locally n/(n-1)-integrable, and the roots may have locally unbounded variation if the coefficients are only of class Cn-1,α for α<1. We also prove a generalization of Ghisi and Gobbino's higher order Glaeser inequalities. We give three applications of the main results: local solvability of a system of pseudo-differential equations, a lifting theorem for mappings into orbit spaces of finite group representations, and a sufficient condition for multi-valued functions to be of Sobolev class W1,p in the sense of Almgren.

Publié le :
DOI : 10.24033/asens.2376
Classification : 26C10, 26A46, 26D10, 30C15, 46E35
Keywords: Perturbation of complex polynomials, absolute continuity of roots, optimal regularity of the roots among Sobolev spaces $W^{1,p}$, higher order Glaeser inequalities
Mot clés : Perturbations des polynômes complexes, continuité absolue des racines, régularité optimale des racines dans les espaces de Sobolev $W^{1,p}$, inégalités de Glaeser d'ordre supérieur
@article{ASENS_2018__51_5_1343_0,
     author = {Parusi\'nski, Adam and Rainer, Armin},
     title = {Optimal {Sobolev} regularity  of roots of polynomials},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1343--1387},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 51},
     number = {5},
     year = {2018},
     doi = {10.24033/asens.2376},
     mrnumber = {3942042},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.2376/}
}
TY  - JOUR
AU  - Parusiński, Adam
AU  - Rainer, Armin
TI  - Optimal Sobolev regularity  of roots of polynomials
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2018
SP  - 1343
EP  - 1387
VL  - 51
IS  - 5
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://archive.numdam.org/articles/10.24033/asens.2376/
DO  - 10.24033/asens.2376
LA  - en
ID  - ASENS_2018__51_5_1343_0
ER  - 
%0 Journal Article
%A Parusiński, Adam
%A Rainer, Armin
%T Optimal Sobolev regularity  of roots of polynomials
%J Annales scientifiques de l'École Normale Supérieure
%D 2018
%P 1343-1387
%V 51
%N 5
%I Société Mathématique de France. Tous droits réservés
%U http://archive.numdam.org/articles/10.24033/asens.2376/
%R 10.24033/asens.2376
%G en
%F ASENS_2018__51_5_1343_0
Parusiński, Adam; Rainer, Armin. Optimal Sobolev regularity  of roots of polynomials. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 5, pp. 1343-1387. doi : 10.24033/asens.2376. http://archive.numdam.org/articles/10.24033/asens.2376/

Alekseevsky, D.; Kriegl, A.; Losik, M.; Michor, P. W. Lifting smooth curves over invariants for representations of compact Lie groups, Transform. Groups, Volume 5 (2000), pp. 103-110 (ISSN: 1083-4362) | DOI | MR | Zbl

Alekseevsky, D.; Kriegl, A.; Michor, P. W.; Losik, M. Choosing roots of polynomials smoothly, Israel J. Math., Volume 105 (1998), pp. 203-233 (ISSN: 0021-2172) | DOI | MR | Zbl

Almgren, F. J. J., World Scientific Monograph Series in Mathematics, 1, World Scientific Publishing Co., Inc., River Edge, NJ, 2000, 955 pages (ISBN: 981-02-4108-9) | MR | Zbl

Bony, J.-M.; Broglia, F.; Colombini, F.; Pernazza, L. Nonnegative functions as squares or sums of squares, J. Funct. Anal., Volume 232 (2006), pp. 137-147 (ISSN: 0022-1236) | DOI | MR | Zbl

Beck, T.; Becker-Kahn, S.; Hanin, B. Nodal sets of smooth functions with finite vanishing order and p-sweepouts, Calc. Var., Volume 57 (2018), 140 pages | DOI | MR

Bony, J.-M.; Colombini, F.; Pernazza, L., Phase space analysis of partial differential equations (Progr. Nonlinear Differential Equations Appl.), Volume 69, Birkha̋user Boston, Boston, MA, 2006, pp. 45-53 | DOI | MR | Zbl

Bony, J.-M.; Colombini, F.; Pernazza, L. On square roots of class Cm of nonnegative functions of one variable, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 9 (2010), pp. 635-644 (ISSN: 0391-173X) | Numdam | MR | Zbl

Bierstone, E.; Milman, P. D. Arc-analytic functions, Invent. math., Volume 101 (1990), pp. 411-424 (ISSN: 0020-9910) | DOI | MR | Zbl

Bronšteĭn, M. D. Smoothness of roots of polynomials depending on parameters, Sibirsk. Mat. Zh., Volume 20 (1979), p. 493-501, 690 ; English translation: Siberian Math. J. 20 (1980), 347–352 (ISSN: 0037-4474) | MR | Zbl

Chaumat, J.; Chollet, A.-M. Division par un polynôme hyperbolique, Canad. J. Math., Volume 56 (2004), pp. 1121-1144 (ISSN: 0008-414X) | DOI | MR | Zbl

Colombini, F.; Jannelli, E.; Spagnolo, S. Well-posedness in the Gevrey classes of the Cauchy problem for a nonstrictly hyperbolic equation with coefficients depending on time, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 10 (1983), pp. 291-312 (ISSN: 0391-173X) | Numdam | MR | Zbl

Colombini, F.; Lerner, N. Une procedure de Calderón-Zygmund pour le problème de la racine k-ième, Ann. Mat. Pura Appl., Volume 182 (2003), pp. 231-246 (ISSN: 0373-3114) | DOI | MR | Zbl

Colombini, F.; Orrù, N.; Pernazza, L. On the regularity of the roots of hyperbolic polynomials, Israel J. Math., Volume 191 (2012), pp. 923-944 (ISSN: 0021-2172) | DOI | MR | Zbl

De Lellis, C.; Spadaro, E. N. Q-valued functions revisited, Mem. Amer. Math. Soc., Volume 211 (2011) (ISBN: 978-0-8218-4914-9, ISSN: 0065-9266) | DOI | MR | Zbl

D'Ancona, P.; Spagnolo, S. Quasi-symmetrization of hyperbolic systems and propagation of the analytic regularity, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., Volume 1 (1998), pp. 169-185 (ISSN: 0392-4041) | MR | Zbl

Ghisi, M.; Gobbino, M. Higher order Glaeser inequalities and optimal regularity of roots of real functions, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 12 (2013), pp. 1001-1021 (ISSN: 0391-173X) | Numdam | MR | Zbl

Glaeser, G. Racine carrée d'une fonction différentiable, Ann. Inst. Fourier (Grenoble), Volume 13 (1963), pp. 203-210 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl

Grafakos, L., Graduate Texts in Math., 249, Springer, New York, 2008, 489 pages (ISBN: 978-0-387-09431-1) | MR | Zbl

Jannelli, E. On the symmetrization of the principal symbol of hyperbolic equations, Comm. Partial Differential Equations, Volume 14 (1989), pp. 1617-1634 (ISSN: 0360-5302) | DOI | MR

Kato, T., Grundl. math. Wiss., 132, Springer, Berlin-New York, 1976 | MR | Zbl

Kriegl, A.; Losik, M.; Michor, P. W. Choosing roots of polynomials smoothly. II, Israel J. Math., Volume 139 (2004), pp. 183-188 (ISSN: 0021-2172) | DOI | MR | Zbl

Kriegl, A.; Losik, M.; Michor, P. W.; Rainer, A. Lifting smooth curves over invariants for representations of compact Lie groups. II, J. Lie Theory, Volume 15 (2005), pp. 227-234 (ISSN: 0949-5932) | MR | Zbl

Kriegl, A.; Losik, M.; Michor, P. W.; Rainer, A. Lifting smooth curves over invariants for representations of compact Lie groups. III, J. Lie Theory, Volume 16 (2006), pp. 579-600 (ISSN: 0949-5932) | MR | Zbl

Kriegl, A.; Losik, M.; Michor, P. W.; Rainer, A. Lifting mappings over invariants of finite groups, Acta Math. Univ. Comenian. (N.S.), Volume 77 (2008), pp. 93-122 (ISSN: 0862-9544) | MR | Zbl

Kriegl, A.; Losik, M.; Michor, P. W.; Rainer, A. Addendum to: “Lifting smooth curves over invariants for representations of compact Lie groups, III” J. Lie Theory 16 (2006), No. 3, 579–600. [MR2248147], J. Lie Theory, Volume 22 (2012), pp. 245-249 (ISSN: 0949-5932) | MR | Zbl

Losik, M.; Michor, P. W.; Rainer, A. A generalization of Puiseux's theorem and lifting curves over invariants, Rev. Mat. Complut., Volume 25 (2012), pp. 139-155 (ISSN: 1139-1138) | DOI | MR | Zbl

Malgrange, B., Tata Institute of Fundamental Research Studies in Mathematics, No. 3, Tata Institute of Fundamental Research, Bombay; Oxford Univ. Press, London, 1967, 106 pages | MR | Zbl

Mandai, T. Smoothness of roots of hyperbolic polynomials with respect to one-dimensional parameter, Bull. Fac. Gen. Ed. Gifu Univ., Volume 21 (1985), pp. 115-118 (ISSN: 0286-3251) | MR

Marcus, M.; Mizel, V. J. Complete characterization of functions which act, via superposition, on Sobolev spaces, Trans. Amer. Math. Soc., Volume 251 (1979), pp. 187-218 (ISSN: 0002-9947) | DOI | MR | Zbl

Parusiński, A.; Rainer, A. A new proof of Bronshtein's theorem, J. Hyperbolic Differ. Equ., Volume 12 (2015), pp. 671-688 (ISSN: 0219-8916) | DOI | MR

Parusiński, A.; Rainer, A. Lifting differentiable curves from orbit spaces, Transform. Groups, Volume 21 (2016), pp. 153-179 (ISSN: 1083-4362) | DOI | MR

Parusiński, A.; Rainer, A. Regularity of roots of polynomials, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 16 (2016), pp. 481-517 (ISSN: 0391-173X) | MR

Rainer, A. Perturbation of complex polynomials and normal operators, Math. Nachr., Volume 282 (2009), pp. 1623-1636 (ISSN: 0025-584X) | DOI | MR | Zbl

Rainer, A. Quasianalytic multiparameter perturbation of polynomials and normal matrices, Trans. Amer. Math. Soc., Volume 363 (2011), pp. 4945-4977 (ISSN: 0002-9947) | DOI | MR | Zbl

Rainer, A. Smooth roots of hyperbolic polynomials with definable coefficients, Israel J. Math., Volume 184 (2011), pp. 157-182 (ISSN: 0021-2172) | DOI | MR | Zbl

Rainer, A. Lifting quasianalytic mappings over invariants, Canad. J. Math., Volume 64 (2012), pp. 409-428 (ISSN: 0008-414X) | DOI | MR | Zbl

Rainer, A. Perturbation theory for normal operators, Trans. Amer. Math. Soc., Volume 365 (2013), pp. 5545-5577 (ISSN: 0002-9947) | DOI | MR | Zbl

Rainer, A. Differentiable roots, eigenvalues, and eigenvectors, Israel J. Math., Volume 201 (2014), pp. 99-122 (ISSN: 0021-2172) | DOI | MR | Zbl

Rahman, Q. I.; Schmeisser, G., London Mathematical Society Monographs. New Series, 26, The Clarendon Press, Oxford Univ. Press, Oxford, 2002, 742 pages (ISBN: 0-19-853493-0) | MR | Zbl

Spagnolo, S. Local and semi-global solvability for systems of non-principal type, Comm. Partial Differential Equations, Volume 25 (2000), pp. 1115-1141 (ISSN: 0360-5302) | DOI | MR | Zbl

Spagnolo, S. On the absolute continuity of the roots of some algebraic equations, Ann. Univ. Ferrara Sez. VII (N.S.), Volume 45 (1999), pp. 327-337 (ISSN: 0430-3202) | DOI | MR | Zbl

Stein, E. M., Princeton Mathematical Series, No. 30, Princeton Univ. Press, Princeton, N.J., 1970, 290 pages | MR | Zbl

Tarama, S. On the lemma of Colombini, Jannelli and Spagnolo, Memoirs of the Faculty of Engineering, Osaka City University, Volume 41 (2000), pp. 111-115

Tarama, S. Note on the Bronshtein theorem concerning hyperbolic polynomials, Sci. Math. Jpn., Volume 63 (2006), pp. 247-285 (ISSN: 1346-0862) | MR | Zbl

Wakabayashi, S. Remarks on hyperbolic polynomials, Tsukuba J. Math., Volume 10 (1986), pp. 17-28 (ISSN: 0387-4982) | DOI | MR | Zbl

Cité par Sources :