Soit une variété projective lisse de dimension trois sur . Nous supposons qu'il existe un automorphisme d'entropie positive. Quitte à remplacer par un de ses itérés , nous montrons qu'une des affirmations suivantes sera verifiée : i) la classe canonique de est numériquement triviale ; ii) est imprimitive ; iii) n'est pas dynamiquement minimal. Comme corollaire, nous montrons que si une variété lisse de dimension trois n'admet pas d'automorphisme primitif d'entropie positive, il en est de même pour toute variété construite par une suite d'éclatements lisses de .
Notre méthode ne s'applique pas dans le cadre des variétés à singularités terminales. Ceci sera illustré par l'exemple d'une variété uniréglée qui admet une infinité de rayons extrémaux -négatifs sur .
Suppose that is a smooth, projective threefold over and that is an automorphism of positive entropy. We show that one of the following must hold, after replacing by an iterate: i) the canonical class of is numerically trivial; ii) is imprimitive; iii) is not dynamically minimal. As a consequence, we show that if a smooth threefold does not admit a primitive automorphism of positive entropy, then no variety constructed by a sequence of smooth blow-ups of can admit a primitive automorphism of positive entropy.
In explaining why the method does not apply to threefolds with terminal singularities, we exhibit a non-uniruled, terminal threefold with infinitely many -negative extremal rays on .
Keywords: Positive entropy automorphisms, minimal model program, threefolds
Mot clés : Automorphismes d'entropie positive, programme du modèle minimal, variétés.
@article{ASENS_2018__51_6_1507_0, author = {Lesieutre, John}, title = {Some constraints on positive entropy automorphisms of smooth threefolds}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1507--1547}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {6}, year = {2018}, doi = {10.24033/asens.2380}, mrnumber = {3940903}, zbl = {1431.14035}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2380/} }
TY - JOUR AU - Lesieutre, John TI - Some constraints on positive entropy automorphisms of smooth threefolds JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 1507 EP - 1547 VL - 51 IS - 6 PB - Société Mathématique de France. Tous droits réservés UR - http://archive.numdam.org/articles/10.24033/asens.2380/ DO - 10.24033/asens.2380 LA - en ID - ASENS_2018__51_6_1507_0 ER -
%0 Journal Article %A Lesieutre, John %T Some constraints on positive entropy automorphisms of smooth threefolds %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 1507-1547 %V 51 %N 6 %I Société Mathématique de France. Tous droits réservés %U http://archive.numdam.org/articles/10.24033/asens.2380/ %R 10.24033/asens.2380 %G en %F ASENS_2018__51_6_1507_0
Lesieutre, John. Some constraints on positive entropy automorphisms of smooth threefolds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 6, pp. 1507-1547. doi : 10.24033/asens.2380. http://archive.numdam.org/articles/10.24033/asens.2380/
, Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, 1993, pp. 379-390 | MR | Zbl
A remark on the Ueno-Campana's threefold, Michigan Math. J., Volume 65 (2016), pp. 567-572 (ISSN: 0026-2285) | DOI | MR | Zbl
, Complex geometry and dynamics (Abel Symp.), Volume 10, Springer, 2015, pp. 1-27 | DOI | MR | Zbl
Linear transformations with invariant cones, Amer. Math. Monthly, Volume 74 (1967), pp. 274-276 (ISSN: 0002-9890) | DOI | MR | Zbl
Periodicities in linear fractional recurrences: degree growth of birational surface maps, Michigan Math. J., Volume 54 (2006), pp. 647-670 (ISSN: 0026-2285) | DOI | MR | Zbl
Dynamics of rational surface automorphisms: linear fractional recurrences, J. Geom. Anal., Volume 19 (2009), pp. 553-583 (ISSN: 1050-6926) | DOI | MR | Zbl
Dynamical degrees of (pseudo)-automorphisms fixing cubic hypersurfaces, Indiana Univ. Math. J., Volume 62 (2013), pp. 1143-1164 (ISSN: 0022-2518) | DOI | MR | Zbl
Dynamique des automorphismes des surfaces projectives complexes, C. R. Acad. Sci. Paris Sér. I Math., Volume 328 (1999), pp. 901-906 (ISSN: 0764-4442) | DOI | MR | Zbl
, Universitext, Springer, 2001, 233 pages (ISBN: 0-387-95227-6) | DOI | MR | Zbl
Groupes commutatifs d'automorphismes d'une variété kählérienne compacte, Duke Math. J., Volume 123 (2004), pp. 311-328 (ISSN: 0012-7094) | DOI | MR | Zbl
, Graduate Texts in Math., 150, Springer, 1995, 785 pages (ISBN: 0-387-94268-8; 0-387-94269-6) | DOI | MR | Zbl
, Graduate Texts in Math., 52, Springer, 1977, 496 pages (ISBN: 0-387-90244-9) | MR | Zbl
Characterization of abelian varieties, Compos. math., Volume 43 (1981), pp. 253-276 (ISSN: 0010-437X) | Numdam | MR | Zbl
Abundance theorem for minimal threefolds, Invent. math., Volume 108 (1992), pp. 229-246 (ISSN: 0020-9910) | DOI | MR | Zbl
, Cambridge Tracts in Mathematics, 134, Cambridge Univ. Press, 1998, 254 pages (ISBN: 0-521-63277-3) | DOI | MR | Zbl
, Algebraic geometry, Sendai, 1985 (Adv. Stud. Pure Math.), Volume 10, North-Holland, 1987, pp. 283-360 | DOI | MR | Zbl
, Analytic and algebraic geometry (IAS/Park City Math. Ser.), Volume 17, Amer. Math. Soc., 2010, pp. 495-524 | DOI | MR | Zbl
, Ergebn. Math. Grenzg., 32, Springer, 1996, 320 pages (ISBN: 3-540-60168-6) | DOI | MR | Zbl
, Ergebn. Math. Grenzg., 48, Springer, 2004, 387 pages (ISBN: 3-540-22534-X) | DOI | MR | Zbl
Dynamical Mordell-Lang and automorphisms of blow-ups (preprint arXiv:1604.08216, to appear in Algebraic Geometry ) | MR
Dynamics on blowups of the projective plane, Publ. Math. Inst. Hautes Études Sci., Volume 105 (2007), pp. 49-89 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Threefolds whose canonical bundles are not numerically effective, Ann. of Math., Volume 116 (1982), pp. 133-176 (ISSN: 0003-486X) | DOI | MR | Zbl
Some aspects of explicit birational geometry inspired by complex dynamics, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa (2014), pp. 695-721 | MR | Zbl
Explicit examples of rational and Calabi-Yau threefolds with primitive automorphisms of positive entropy, J. Math. Sci. Univ. Tokyo, Volume 22 (2015), pp. 361-385 (ISSN: 1340-5705) | MR | Zbl
Pseudo-automorphisms of positive entropy on the blowups of products of projective spaces, Math. Ann., Volume 359 (2014), pp. 189-209 (ISSN: 0025-5831) | DOI | MR | Zbl
, Grundl. math. Wiss., 334, Springer, 2006, 339 pages (ISBN: 978-3-540-30608-5; 3-540-30608-0) | MR | Zbl
The topology of smooth divisors and the arithmetic of abelian varieties, Michigan Math. J., Volume 48 (2000), pp. 611-624 (ISSN: 0026-2285) | DOI | MR | Zbl
Moving codimension-one subvarieties over finite fields, Amer. J. Math., Volume 131 (2009), pp. 1815-1833 (ISSN: 0002-9327) | DOI | MR | Zbl
(Relative) dynamical degrees of rational maps over an algebraic closed field (preprint arXiv:1501.01523 )
Automorphisms of blowups of threefolds being Fano or having Picard number 1, Ergodic Theory Dynam. Systems, Volume 37 (2017), pp. 2255-2275 (ISSN: 0143-3857) | DOI | MR | Zbl
Calabi-Yau threefolds with infinitely many divisorial contractions, J. Math. Kyoto Univ., Volume 44 (2004), pp. 99-118 (ISSN: 0023-608X) | DOI | MR | Zbl
On contractions of extremal rays of Fano manifolds, J. reine angew. Math., Volume 417 (1991), pp. 141-157 (ISSN: 0075-4102) | DOI | MR | Zbl
Dynamics of automorphisms on projective complex manifolds, J. Differential Geom., Volume 82 (2009), pp. 691-722 http://projecteuclid.org/euclid.jdg/1251122550 (ISSN: 0022-040X) | MR | Zbl
-dimensional projective varieties with the action of an abelian group of rank , Trans. Amer. Math. Soc., Volume 368 (2016), pp. 8849-8872 (ISSN: 0002-9947) | DOI | MR | Zbl
Cité par Sources :