[Temps exceptionnels pour la percolation dynamique sous exclusion]
Cet article porte sur une version conservative du modèle de la percolation dynamique introduit par Häggström, Peres et Steif dans [10]. Le modèle se définit simplement de la façon suivante : on tire une configuration de percolation initiale . Puis, on fait évoluer cette configuration selon un processus d'exclusion simple de noyau symétrique . On commence par une étude générale (en suivant [10]) du processus que l'on appelle percolation dynamique sous -exclusion. Nous analysons ensuite de façon détaillée le cas bi-dimensionnel au point critique (à la fois pour le réseau triangulaire et pour le réseau ) pour des noyaux en loi de puissance
We analyze in this paper a conservative analog of the celebrated model of dynamical percolation introduced by Häggström, Peres and Steif in [10]. It is simply defined as follows: start with an initial percolation configuration . Let this configuration evolve in time according to a simple exclusion process with symmetric kernel . We start with a general investigation (following [10]) of this dynamical process which we call -exclusion dynamical percolation. We then proceed with a detailed analysis of the planar case at the critical point (both for the triangular grid and the square lattice ) where we consider the power-law kernels
DOI : 10.24033/asens.2383
Keywords: Percolation, dynamical percolation, simple exclusion process, exceptional times, noise sensitivity, Fourier analysis of Boolean functions.
Mot clés : Percolation, percolation dynamique, processus d'exclusion simple, temps exceptionnels, sensibilité au bruit, analyse de Fourier des fonctions Booléennes.
@article{ASENS_2019__52_1_1_0, author = {Garban, Christophe and Vanneuville, Hugo}, title = {Exceptional times for percolation under exclusion dynamics}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1--57}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {1}, year = {2019}, doi = {10.24033/asens.2383}, mrnumber = {3940906}, zbl = {1426.82056}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2383/} }
TY - JOUR AU - Garban, Christophe AU - Vanneuville, Hugo TI - Exceptional times for percolation under exclusion dynamics JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 1 EP - 57 VL - 52 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - http://archive.numdam.org/articles/10.24033/asens.2383/ DO - 10.24033/asens.2383 LA - en ID - ASENS_2019__52_1_1_0 ER -
%0 Journal Article %A Garban, Christophe %A Vanneuville, Hugo %T Exceptional times for percolation under exclusion dynamics %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 1-57 %V 52 %N 1 %I Société Mathématique de France. Tous droits réservés %U http://archive.numdam.org/articles/10.24033/asens.2383/ %R 10.24033/asens.2383 %G en %F ASENS_2019__52_1_1_0
Garban, Christophe; Vanneuville, Hugo. Exceptional times for percolation under exclusion dynamics. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 1, pp. 1-57. doi : 10.24033/asens.2383. http://archive.numdam.org/articles/10.24033/asens.2383/
Exclusion sensitivity of Boolean functions, Probab. Theory Related Fields, Volume 155 (2013), pp. 621-663 (ISSN: 0178-8051) | DOI | MR | Zbl
Noise sensitivity of Boolean functions and applications to percolation, Inst. Hautes Études Sci. Publ. Math., Volume 90 (1999), pp. 5-43 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
, Cambridge Univ. Press, 2006, 323 pages (ISBN: 978-0-521-87232-4; 0-521-87232-4) |Mean-field behavior for nearest-neighbor percolation in , Electron. J. Probab., Volume 22 (2017) (ISSN: 1083-6489) | DOI | MR | Zbl
The Fourier spectrum of critical percolation, Acta Math., Volume 205 (2010), pp. 19-104 (ISSN: 0001-5962) | DOI | MR | Zbl
Pivotal, cluster, and interface measures for critical planar percolation, J. Amer. Math. Soc., Volume 26 (2013), pp. 939-1024 (ISSN: 0894-0347) | DOI | MR | Zbl
The scaling limits of near-critical and dynamical percolation, J. Eur. Math. Soc. (JEMS), Volume 20 (2018), pp. 1195-1268 (ISSN: 1435-9855) | DOI | MR | Zbl
, Grundl. math. Wiss., 321, Springer, 1999, 444 pages (ISBN: 3-540-64902-6) | DOI | MR | Zbl
, Institute of Mathematical Statistics Textbooks, 5, Cambridge Univ. Press, 2015, 203 pages (ISBN: 978-1-107-43255-0; 978-1-107-07643-3) | DOI | MR
A lower bound for the critical probability in a certain percolation process, Proc. Cambridge Philos. Soc., Volume 56 (1960), pp. 13-20 | DOI | MR | Zbl
Additive set-valued Markov processes and graphical methods, Ann. Probability, Volume 6 (1978), pp. 355-378 | DOI | MR | Zbl
Local time on the exceptional set of dynamical percolation and the incipient infinite cluster, Ann. Probab., Volume 43 (2015), pp. 2949-3005 (ISSN: 0091-1798) | DOI | MR | Zbl
Dynamical percolation, Ann. Inst. H. Poincaré Probab. Statist., Volume 33 (1997), pp. 497-528 (ISSN: 0246-0203) | DOI | Numdam | MR | Zbl
, Probability and phase transition (Cambridge, 1993) (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume 420, Kluwer Acad. Publ., 1994, pp. 87-122 | DOI | MR | Zbl
The critical probability of bond percolation on the square lattice equals , Comm. Math. Phys., Volume 74 (1980), pp. 41-59 http://projecteuclid.org/euclid.cmp/1103907931 (ISSN: 0010-3616) | DOI | MR | Zbl
Scaling relations for 2D-percolation, Comm. Math. Phys., Volume 109 (1987), pp. 109-156 http://projecteuclid.org/euclid.cmp/1104116714 (ISSN: 0010-3616) | DOI | MR | Zbl
Strict inequalities for some critical exponents in two-dimensional percolation, J. Statist. Phys., Volume 46 (1987), pp. 1031-1055 (ISSN: 0022-4715) | DOI | MR | Zbl
, Classics in Mathematics, Springer, 2005, 496 pages (ISBN: 3-540-22617-6) | DOI | MR | Zbl
One-arm exponent for critical 2D percolation, Electron. J. Probab., Volume 7 (2002), pp. No. 2 (ISSN: 1083-6489) | DOI | MR | Zbl
Near-critical percolation in two dimensions, Electron. J. Probab., Volume 13 (2008), pp. No. 55, 1562-1623 (ISSN: 1083-6489) | DOI | MR | Zbl
A Noise Sensitivity Theorem for Schreier Graphs (preprint arXiv:1501.01828 )
Monotonicity properties of exclusion sensitivity, Electron. J. Probab., Volume 21 (2016) (ISSN: 1083-6489) | DOI | MR | Zbl
The number of infinite clusters in dynamical percolation, Probab. Theory Related Fields, Volume 111 (1998), pp. 141-165 (ISSN: 0178-8051) | DOI | MR | Zbl
Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math., Volume 333 (2001), pp. 239-244 (ISSN: 0764-4442) | DOI | MR | Zbl
Quantitative noise sensitivity and exceptional times for percolation, Ann. of Math., Volume 171 (2010), pp. 619-672 (ISSN: 0003-486X) | DOI | MR | Zbl
On the scaling limits of planar percolation, Ann. Probab., Volume 39 (2011), pp. 1768-1814 (ISSN: 0091-1798) | DOI | MR | Zbl
Critical exponents for two-dimensional percolation, Math. Res. Lett., Volume 8 (2001), pp. 729-744 (ISSN: 1073-2780) | DOI | MR | Zbl
, Statistical mechanics (IAS/Park City Math. Ser.), Volume 16, Amer. Math. Soc., 2009, pp. 297-360 | DOI | MR | Zbl
Cité par Sources :