Nous montrons que le groupe
We prove that the group
Keywords: Tame automorphisms, acylindrical hyperbolicity, triangle complex
Mot clés : Automorphismes mod/'er/'es, hyperbolicit/'e acylindrique, complexe de triangles
@article{ASENS_2019__52_1_369_0, author = {Lamy, St\'ephane and Przytycki, Piotr}, title = {Acylindrical hyperbolicity of the three-dimensional tame automorphism group}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {367--392}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {1}, year = {2019}, doi = {10.24033/asens.2390}, mrnumber = {3948112}, zbl = {1442.14188}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2390/} }
TY - JOUR AU - Lamy, Stéphane AU - Przytycki, Piotr TI - Acylindrical hyperbolicity of the three-dimensional tame automorphism group JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 367 EP - 392 VL - 52 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - https://www.numdam.org/articles/10.24033/asens.2390/ DO - 10.24033/asens.2390 LA - en ID - ASENS_2019__52_1_369_0 ER -
%0 Journal Article %A Lamy, Stéphane %A Przytycki, Piotr %T Acylindrical hyperbolicity of the three-dimensional tame automorphism group %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 367-392 %V 52 %N 1 %I Société Mathématique de France. Tous droits réservés %U https://www.numdam.org/articles/10.24033/asens.2390/ %R 10.24033/asens.2390 %G en %F ASENS_2019__52_1_369_0
Lamy, Stéphane; Przytycki, Piotr. Acylindrical hyperbolicity of the three-dimensional tame automorphism group. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 1, pp. 367-392. doi : 10.24033/asens.2390. https://www.numdam.org/articles/10.24033/asens.2390/
Bounded cohomology of subgroups of mapping class groups, Geom. Topol., Volume 6 (2002), pp. 69-89 | DOI | MR | Zbl
The tame automorphism group of an affine quadric threefold acting on a square complex, J. Éc. polytech. Math., Volume 1 (2014), pp. 161-223 | DOI | MR | Zbl
, Grundl. math. Wiss., 319, Springer, 1999, 643 pages | MR | Zbl
Tight geodesics in the curve complex, Invent. math., Volume 171 (2008), pp. 281-300 | DOI | MR | Zbl
Sur les groupes de transformations birationnelles des surfaces, Ann. of Math., Volume 174 (2011), pp. 299-340 | DOI | MR | Zbl
, European Congress of Mathematics, Eur. Math. Soc., 2013, pp. 211-225 | MR | Zbl
Normal subgroups in the Cremona group, Acta Math., Volume 210 (2013), pp. 31-94 | DOI | MR | Zbl
Non-simplicity of the group of unimodular automorphisms of an affine plane, Mat. Zametki, Volume 15 (1974), pp. 289-293 | MR
Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc., Volume 245 (2017) | MR
Normal subgroup generated by a plane polynomial automorphism, Transform. Groups, Volume 15 (2010), pp. 577-610 | DOI | MR | Zbl
Simplicial nonpositive curvature, Publ. Math. Inst. Hautes Études Sci., Volume 104, pp. 1-85 | DOI | Numdam | MR | Zbl
Shestakov-Umirbaev reductions and Nagata's conjecture on a polynomial automorphism, Tohoku Math. J., Volume 62 (2010), pp. 75-115 | DOI | MR | Zbl
Combinatorics of the tame automorphism group ( arXiv:1505.0549, to appear in Ann. Fac. Sci. Toulouse ) | MR
Non simplicité du groupe de Cremona sur tout corps, Ann. Inst. Fourier, Volume 66 (2016), pp. 2021-2046 | DOI | MR | Zbl
, Ergebn. Math. Grenzg., 89, Springer, 1977, 339 pages | MR | Zbl
On the acylindrical hyperbolicity of the tame automorphism group of SL
Acylindrical hyperbolicity of groups acting on trees, Math. Ann., Volume 362 (2015), pp. 1055-1105 | DOI | MR | Zbl
Acylindrically hyperbolic groups, Trans. Amer. Math. Soc., Volume 368 (2016), pp. 851-888 | DOI | MR | Zbl
, Springer, 1980 |The tame and the wild automorphisms of polynomial rings in three variables, J. Amer. Math. Soc., Volume 17 (2004), pp. 197-227 | DOI | MR | Zbl
The generalized amalgamated product structure of the tame automorphism group in dimension three, Transform. Groups, Volume 20 (2015), pp. 291-304 | DOI | MR | Zbl
- Cohomology of group theoretic Dehn fillings II, Advances in Mathematics, Volume 437 (2024), p. 109412 | DOI:10.1016/j.aim.2023.109412
- Hyperbolic spaces that detect all strongly-contracting directions, arXiv (2024) | DOI:10.48550/arxiv.2404.12162 | arXiv:2404.12162
- Presqu’un immeuble pour le groupe des automorphismes modérés, Annales Henri Lebesgue, Volume 4 (2021), p. 605 | DOI:10.5802/ahl.83
- Random walks, WPD actions, and the Cremona group, Proceedings of the London Mathematical Society, Volume 123 (2021) no. 2, p. 153 | DOI:10.1112/plms.12394
- Combinatorics of the tame automorphism group, arXiv (2015) | DOI:10.48550/arxiv.1505.05497 | arXiv:1505.05497
Cité par 5 documents. Sources : Crossref, NASA ADS