[Homologie de Hochschild-Pirashvili sur les suspensions et représentations de ]
On montre que l'homologie de Hochschild-Pirashvili sur toute suspension admet une certaine décomposition de Hodge. Pour toute application entre suspensions , l'application induite en homologie de Hochschild-Pirashvili préserve cette décomposition si est une suspension. Dans le cas contraire, on montre que la décomposition est préservée uniquement en tant que filtration. Dans le cas particulier d'un bouquet de cercles, l'homologie de Hochschild-Pirashvili produit de nouvelles représentations de qui ne se factorisent pas en général par . Les représentations ainsi obtenues sont naturellement filtrées de façon à ce que l'action sur les quotients gradués se factorise par .
We show that the Hochschild-Pirashvili homology on any suspension admits the so called Hodge splitting. For a map between suspensions , the induced map in the Hochschild-Pirashvili homology preserves this splitting if is a suspension. If is not a suspension, we show that the splitting is preserved only as a filtration. As a special case, we obtain that the Hochschild-Pirashvili homology on wedges of circles produces new representations of that do not factor in general through . The obtained representations are naturally filtered in such a way that the action on the graded quotients does factor through .
DOI : 10.24033/asens.2396
Keywords: Higher Hochschild homology, Hodge decomposition, outer automorphism group of a free group, Poincaré-Birkhoff-Witt filtration, commutative-Lie Koszul duality.
Mot clés : Homologie de Hochschild supérieure, décomposition de Hodge, groupe d'automorphismes extérieurs d'un groupe libre, filtration de Poincaré-Birkhoff-Witt, dualité de Koszul commutative-Lie
@article{ASENS_2019__52_3_761_0, author = {Turchin, Victor and Willwacher, Thomas}, title = {Hochschild-Pirashvili homology on suspensions and representations of~$\mathrm {Out}(F_n)$}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {761--795}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {3}, year = {2019}, doi = {10.24033/asens.2396}, mrnumber = {3982870}, zbl = {1435.55005}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2396/} }
TY - JOUR AU - Turchin, Victor AU - Willwacher, Thomas TI - Hochschild-Pirashvili homology on suspensions and representations of $\mathrm {Out}(F_n)$ JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 761 EP - 795 VL - 52 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://archive.numdam.org/articles/10.24033/asens.2396/ DO - 10.24033/asens.2396 LA - en ID - ASENS_2019__52_3_761_0 ER -
%0 Journal Article %A Turchin, Victor %A Willwacher, Thomas %T Hochschild-Pirashvili homology on suspensions and representations of $\mathrm {Out}(F_n)$ %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 761-795 %V 52 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://archive.numdam.org/articles/10.24033/asens.2396/ %R 10.24033/asens.2396 %G en %F ASENS_2019__52_3_761_0
Turchin, Victor; Willwacher, Thomas. Hochschild-Pirashvili homology on suspensions and representations of $\mathrm {Out}(F_n)$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 3, pp. 761-795. doi : 10.24033/asens.2396. http://archive.numdam.org/articles/10.24033/asens.2396/
Factorization homology of topological manifolds, J. Topol., Volume 8 (2015), pp. 1045-1084 (ISSN: 1753-8416) | DOI | MR | Zbl
On the rational homology of high-dimensional analogues of spaces of long knots, Geom. Topol., Volume 18 (2014), pp. 1261-1322 (ISSN: 1465-3060) | DOI | MR | Zbl
Graph-complexes computing the rational homotopy of high dimensional analogues of spaces of long knots, Ann. Inst. Fourier, Volume 65 (2015), pp. 1-62 http://aif.cedram.org/item?id=AIF_2015__65_1_1_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
models of based mapping spaces, J. Math. Soc. Japan, Volume 63 (2011), pp. 503-524 http://projecteuclid.org/euclid.jmsj/1303737796 (ISSN: 0025-5645) | MR | Zbl
André-Quillen cohomology and rational homotopy of function spaces, Adv. Math., Volume 193 (2005), pp. 18-39 (ISSN: 0001-8708) | DOI | MR | Zbl
On the rational homotopy type of function spaces, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 4931-4951 (ISSN: 0002-9947) | DOI | MR | Zbl
Abelian covers of graphs and maps between outer automorphism groups of free groups, Math. Ann., Volume 353 (2012), pp. 1069-1102 (ISSN: 0025-5831) | DOI | MR | Zbl
Higher topological cyclic homology and the Segal conjecture for tori, Adv. Math., Volume 226 (2011), pp. 1823-1874 (ISSN: 0001-8708) | DOI | MR | Zbl
Sur l'homologie des groupes d'automorphismes des groupes libres à coefficients polynomiaux, Comment. Math. Helv., Volume 90 (2015), pp. 33-58 (ISSN: 0010-2571) | DOI | MR | Zbl
, Graduate Texts in Math., 205, Springer, 2001, 535 pages (ISBN: 0-387-95068-0) | DOI | MR | Zbl
, World Scientific Publishing Co. Pte. Ltd., 2015, 412 pages (ISBN: 978-981-4651-42-4) |, Lecture Notes in Math., 1967, Springer, 2009, 308 pages (ISBN: 978-3-540-89055-3) | DOI | MR | Zbl
, Mathematical aspects of quantum field theories (Math. Phys. Stud.), Springer, 2015, pp. 429-552 | DOI | MR | Zbl
Linear representations of the automorphism group of a free group, Geom. Funct. Anal., Volume 18 (2009), pp. 1564-1608 (ISSN: 1016-443X) | DOI | MR | Zbl
A Hodge-type decomposition for commutative algebra cohomology, J. Pure Appl. Algebra, Volume 48 (1987), pp. 229-247 (ISSN: 0022-4049) | DOI | MR | Zbl
A Chen model for mapping spaces and the surface product, Ann. Sci. Éc. Norm. Supér., Volume 43 (2010), pp. 811-881 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Higher Hochschild homology, topological chiral homology and factorization algebras, Comm. Math. Phys., Volume 326 (2014), pp. 635-686 (ISSN: 0010-3616) | DOI | MR | Zbl
The rank filtration and Robinson's complex, J. Pure Appl. Algebra, Volume 212 (2008), pp. 735-752 (ISSN: 0022-4049) | DOI | MR | Zbl
Outer automorphism groups of free groups: linear and free representations, J. Lond. Math. Soc., Volume 87 (2013), pp. 917-942 (ISSN: 0024-6107) | DOI | MR | Zbl
Low-dimensional free and linear representations of , J. Group Theory, Volume 18 (2015), pp. 913-949 (ISSN: 1433-5883) | DOI | MR | Zbl
Opérations sur l'homologie cyclique des algèbres commutatives, Invent. math., Volume 96 (1989), pp. 205-230 (ISSN: 0020-9910) | DOI | MR | Zbl
, Current developments in mathematics, 2008, Int. Press, 2009, pp. 129-280 | MR | Zbl
, Grundl. math. Wiss., 346, Springer, 2012, 634 pages (ISBN: 978-3-642-30361-6) | DOI | MR | Zbl
Generic algebras and iterated Hochschild homology, J. Pure Appl. Algebra, Volume 162 (2001), pp. 337-357 (ISSN: 0022-4049) | DOI | MR | Zbl
La décomposition en poids des algèbres de Hopf, Ann. Inst. Fourier, Volume 43 (1993), pp. 1067-1087 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
L'algèbre des descentes d'une bigèbre graduée, J. Algebra, Volume 170 (1994), pp. 547-566 (ISSN: 0021-8693) | DOI | MR | Zbl
Dold-Kan type theorem for -groups, Math. Ann., Volume 318 (2000), pp. 277-298 (ISSN: 0025-5831) | DOI | MR | Zbl
Hodge decomposition for higher order Hochschild homology, Ann. Sci. École Norm. Sup., Volume 33 (2000), pp. 151-179 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Cochain algebras of mapping spaces and finite group actions, Topology Appl., Volume 128 (2003), pp. 189-207 (ISSN: 0166-8641) | DOI | MR | Zbl
Deformation theory with homotopy algebra structures on tensor products, Doc. Math., Volume 23 (2018), pp. 189-240 (ISSN: 1431-0635) | DOI | MR | Zbl
Higher topological Hochschild homology of Thom spectra, J. Topol., Volume 4 (2011), pp. 161-189 (ISSN: 1753-8416) | DOI | MR | Zbl
The rational homology of spaces of long links, Algebr. Geom. Topol., Volume 16 (2016), pp. 757-782 (ISSN: 1472-2747) | DOI | MR | Zbl
Rational homology and homotopy of high-dimensional string links, Forum Math., Volume 30 (2018), pp. 1209-1235 (ISSN: 0933-7741) | DOI | MR | Zbl
Hodge-type decomposition in the homology of long knots, J. Topol., Volume 3 (2010), pp. 487-534 (ISSN: 1753-8416) | DOI | MR | Zbl
Commutative hairy graphs and representations of , J. Topol., Volume 10 (2017), pp. 386-411 (ISSN: 1753-8416) | DOI | MR | Zbl
Relative (non-)formality of the little cubes operads and the algebraic Cerf lemma, Amer. J. Math., Volume 140 (2018), pp. 277-316 (ISSN: 0002-9327) | DOI | MR | Zbl
, Cambridge Studies in Advanced Math., 38, Cambridge Univ. Press, 1994, 450 pages (ISBN: 0-521-43500-5; 0-521-55987-1) | DOI | MR | Zbl
Embeddings from the point of view of immersion theory. I, Geom. Topol., Volume 3 (1999), pp. 67-101 (ISSN: 1465-3060) | DOI | MR | Zbl
Cité par Sources :