Pinning and disorder relevance for the lattice Gaussian Free Field II: The two dimensional case
[Interaction et pertinence du désordre pour le champ libre gaussien sur un réseau II : le cas bi-dimensionnel]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 6, pp. 1331-1401.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Cet article approfondit l'étude (commencée dans [35]) de la transition de localisation pour un champ libre gaussien défini sur le réseau d en interaction avec un substrat désordonné qui affecte les points situés proches de la hauteur zéro. Le substrat peut avoir un effet attracteur ou répulsif selon le site considéré. Une transition a lieu lorsque le potentiel moyen d'interaction h dépasse un certain seuil hc: cette valeur critique définit une phase délocalisée h<hc, au sein de laquelle le champ est globalement repoussé par le substrat, et une phase localisée h>hc ou le champ adhère au substrat. Notre objectif est d'évaluer les effets de la présence de désordre pour cette transition de phase. Nous nous concentrons sur le cas bi-dimensionnel (d=2), et démontrons que la valeur du point critique hc(β) coincide avec celle du modèle moyenné (ou annealed), et ce quelle que soit la valeur de l'intensité du désordre β. De plus, nous démontrons que, contrairement au cas d3 pour lequel l'énergie libre a un comportement quadratique au voisinage du point critique, la transition de phase est ici d'ordre infini

limu0+logf(β,hc(β)+u)(logu)=.
Un résultat analogue est exposé pour le modèle de co-membrane bi-dimensionnelle.

This paper continues a study initiated in [35], on the localization transition of a lattice free field on d interacting with a quenched disordered substrate that acts on the interface when its height is close to zero. The substrate has the tendency to localize or repel the interface at different sites. A transition takes place when the average pinning potential h goes past a threshold hc: this critical value separates a delocalized phase h<hc, where the field is macroscopically repelled by the substrate from a localized one h>hc where the field sticks to the substrate. Our goal is to investigate the effect of the presence of disorder on this phase transition. We focus on the two dimensional case (d=2) for which we had obtained so far only limited results. We prove that the value of hc(β) is the same as for the annealed model, for all values of the disorder intensity β. Moreover we prove that, in contrast with the case d3 where the free energy has a quadratic behavior near the critical point, the phase transition is of infinite order

limu0+logf(β,hc(β)+u)(logu)=.
An analogous result is presented for the two dimensional co-membrane model.

Publié le :
DOI : 10.24033/asens.2411
Classification : 60K35, 60K37, 82B27, 82B44
Keywords: Lattice Gaussian free field, disordered pinning model, localization transition, critical behavior, disorder relevance, co-membrane model
Mot clés : Champs libre gaussien sur un réseau, modèle d'accrochage désordonné, transition de localisation, comportement critique, pertinence du désordre, modèle de co-membrane
@article{ASENS_2019__52_6_1331_0,
     author = {Lacoin, Hubert},
     title = {Pinning and disorder relevance  for the lattice {Gaussian} {Free} {Field} {II:}  {The} two dimensional case},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1331--1401},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 52},
     number = {6},
     year = {2019},
     doi = {10.24033/asens.2411},
     mrnumber = {4061024},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.2411/}
}
TY  - JOUR
AU  - Lacoin, Hubert
TI  - Pinning and disorder relevance  for the lattice Gaussian Free Field II:  The two dimensional case
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2019
SP  - 1331
EP  - 1401
VL  - 52
IS  - 6
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://archive.numdam.org/articles/10.24033/asens.2411/
DO  - 10.24033/asens.2411
LA  - en
ID  - ASENS_2019__52_6_1331_0
ER  - 
%0 Journal Article
%A Lacoin, Hubert
%T Pinning and disorder relevance  for the lattice Gaussian Free Field II:  The two dimensional case
%J Annales scientifiques de l'École Normale Supérieure
%D 2019
%P 1331-1401
%V 52
%N 6
%I Société Mathématique de France. Tous droits réservés
%U http://archive.numdam.org/articles/10.24033/asens.2411/
%R 10.24033/asens.2411
%G en
%F ASENS_2019__52_6_1331_0
Lacoin, Hubert. Pinning and disorder relevance  for the lattice Gaussian Free Field II:  The two dimensional case. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 6, pp. 1331-1401. doi : 10.24033/asens.2411. http://archive.numdam.org/articles/10.24033/asens.2411/

Arguin, L.-P.; Bovier, A.; Kistler, N. The extremal process of branching Brownian motion, Probab. Theory Related Fields, Volume 157 (2013), pp. 535-574 (ISSN: 0178-8051) | DOI | MR | Zbl

Aïdékon, E. Convergence in law of the minimum of a branching random walk, Ann. Probab., Volume 41 (2013), pp. 1362-1426 (ISSN: 0091-1798) | DOI | MR | Zbl

Alexander, K. S. The effect of disorder on polymer depinning transitions, Comm. Math. Phys., Volume 279 (2008), pp. 117-146 (ISSN: 0010-3616) | DOI | MR | Zbl

Aïdékon, E.; Shi, Z. Weak convergence for the minimal position in a branching random walk: a simple proof, Period. Math. Hungar., Volume 61 (2010), pp. 43-54 (ISSN: 0031-5303) | DOI | MR | Zbl

Alexander, K. S.; Zygouras, N. Quenched and annealed critical points in polymer pinning models, Comm. Math. Phys., Volume 291 (2009), pp. 659-689 (ISSN: 0010-3616) | DOI | MR | Zbl

Alexander, K. S.; Zygouras, N. Path properties of the disordered pinning model in the delocalized regime, Ann. Appl. Probab., Volume 24 (2014), pp. 599-615 (ISSN: 1050-5164) | DOI | MR | Zbl

Bolthausen, E.; Brydges, D., State of the art in probability and statistics (Leiden, 1999) (IMS Lecture Notes Monogr. Ser.), Volume 36, Inst. Math. Statist., Beachwood, OH, 2001, pp. 134-149 | DOI | MR

Bolthausen, E.; Deuschel, J.-D.; Giacomin, G. Entropic repulsion and the maximum of the two-dimensional harmonic crystal, Ann. Probab., Volume 29 (2001), pp. 1670-1692 (ISSN: 0091-1798) | DOI | MR | Zbl

Bolthausen, E.; Deuschel, J. D.; Zeitouni, O., J. Math. Phys., Volume 41, 2000, pp. 1211-1223 (Probabilistic techniques in equilibrium and nonequilibrium statistical physics) (ISSN: 0022-2488) | DOI | MR | Zbl

Bolthausen, E.; Deuschel, J. D.; Zeitouni, O. Recursions and tightness for the maximum of the discrete, two dimensional Gaussian free field, Electron. Commun. Probab., Volume 16 (2011), pp. 114-119 | DOI | MR | Zbl

Biskup, M.; Louidor, O. Extreme local extrema of two-dimensional discrete Gaussian free field, Comm. Math. Phys., Volume 345 (2016), pp. 271-304 (ISSN: 0010-3616) | DOI | MR

Berger, Q.; Lacoin, H. Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift, J. Inst. Math. Jussieu, Volume 17 (2018), pp. 305-346 (ISSN: 1474-7480) | DOI | MR

Bolthausen, E., Correlated random systems: five different methods (Lecture Notes in Math.), Volume 2143, Springer, 2015, pp. 1-43 | DOI | MR

Bramson, M. D. Maximal displacement of branching Brownian motion, Comm. Pure Appl. Math., Volume 31 (1978), pp. 531-581 (ISSN: 0010-3640) | DOI | MR | Zbl

Birkner, M.; Sun, R. Annealed vs quenched critical points for a random walk pinning model, Ann. Inst. Henri Poincaré Probab. Stat., Volume 46 (2010), pp. 414-441 (ISSN: 0246-0203) | DOI | Numdam | MR | Zbl

Birkner, M.; Sun, R. Disorder relevance for the random walk pinning model in dimension 3, Ann. Inst. Henri Poincaré Probab. Stat., Volume 47 (2011), pp. 259-293 (ISSN: 0246-0203) | DOI | Numdam | MR | Zbl

Berger, Q.; Toninelli, F. L. On the critical point of the random walk pinning model in dimension d=3 , Electron. J. Probab., Volume 15 (2010), pp. no. 21, 654-683 | DOI | MR | Zbl

Bolthausen, E.; Velenik, Y. Critical behavior of the massless free field at the depinning transition, Comm. Math. Phys., Volume 223 (2001), pp. 161-203 (ISSN: 0010-3616) | DOI | MR | Zbl

Chiarini, A.; Cipriani, A.; Hazra, R. S. A note on the extremal process of the supercritical Gaussian free field, Electron. Commun. Probab., Volume 20 (2015) | DOI | MR

Caravenna, F.; Giacomin, G.; Toninelli, F. L., Probability in complex physical systems (Springer Proc. Math.), Volume 11, Springer, 2012, pp. 289-311 | DOI | MR | Zbl

Coquille, L.; Miłoś, P. A note on the discrete Gaussian free field with disordered pinning on d , d 2 (preprint arXiv:1303.6770 ) | MR | Zbl

Coquille, L.; Miłoś, P. A note on the discrete Gaussian free field with disordered pinning on d, d2 , Stochastic Process. Appl., Volume 123 (2013), pp. 3542-3559 (ISSN: 0304-4149) | DOI | MR | Zbl

Caputo, P.; Velenik, Y. A note on wetting transition for gradient fields, Stochastic Process. Appl., Volume 87 (2000), pp. 107-113 (ISSN: 0304-4149) | DOI | MR | Zbl

Daviaud, O. Extremes of the discrete two-dimensional Gaussian free field, Ann. Probab., Volume 34 (2006), pp. 962-986 (ISSN: 0091-1798) | DOI | MR | Zbl

Derrida, B.; Giacomin, G.; Lacoin, H.; Toninelli, F. L. Fractional moment bounds and disorder relevance for pinning models, Comm. Math. Phys., Volume 287 (2009), pp. 867-887 (ISSN: 0010-3616) | DOI | MR | Zbl

Derrida, B.; Hakim, V.; Vannimenus, J. Effect of disorder on two-dimensional wetting, J. Statist. Phys., Volume 66 (1992), pp. 1189-1213 (ISSN: 0022-4715) | DOI | MR | Zbl

Dembo, A.; Zeitouni, O., Stochastic Modelling and Applied Probability, 38, Springer, 2010, 396 pages (ISBN: 978-3-642-03310-0) | DOI | MR | Zbl

Ding, J.; Zeitouni, O. Extreme values for two-dimensional discrete Gaussian free field, Ann. Probab., Volume 42 (2014), pp. 1480-1515 (ISSN: 0091-1798) | DOI | MR | Zbl

Fisher, M. E. Walks, walls, wetting, and melting, J. Statist. Phys., Volume 34 (1984), pp. 667-729 (ISSN: 0022-4715) | DOI | MR | Zbl

Fortuin, C. M.; Kasteleyn, P. W.; Ginibre, J. Correlation inequalities on some partially ordered sets, Comm. Math. Phys., Volume 22 (1971), pp. 89-103 http://projecteuclid.org/euclid.cmp/1103857443 (ISSN: 0010-3616) | DOI | MR | Zbl

Giacomin, G. Aspects of statistical mechanics of random surfaces (2001) (Notes of the lectures given at IHP, https://www.lpma-paris.fr/modsto/_media/users/giacomin/ihp.pdf )

Giacomin, G., Imperial College Press, London, 2007, 242 pages (ISBN: 978-1-86094-786-5; 1-86094-786-7) | DOI | MR

Giacomin, G., Lecture Notes in Math., 2025, Springer, 2011, 130 pages (ISBN: 978-3-642-21155-3) | DOI | MR | Zbl

Giacomin, G.; Lacoin, H. Disorder and wetting transition: the pinned harmonic crystal in dimension three or larger, Ann. Appl. Probab., Volume 28 (2018), pp. 577-606 (ISSN: 1050-5164) | DOI | MR

Giacomin, G.; Lacoin, H. Pinning and disorder relevance for the lattice Gaussian free field, J. Eur. Math. Soc. (JEMS), Volume 20 (2018), pp. 199-257 (ISSN: 1435-9855) | DOI | MR

Giacomin, G.; Lacoin, H.; Toninelli, F. L. Hierarchical pinning models, quadratic maps and quenched disorder, Probab. Theory Related Fields, Volume 147 (2010), pp. 185-216 (ISSN: 0178-8051) | DOI | MR | Zbl

Giacomin, G.; Lacoin, H.; Toninelli, F. Marginal relevance of disorder for pinning models, Comm. Pure Appl. Math., Volume 63 (2010), pp. 233-265 (ISSN: 0010-3640) | DOI | MR | Zbl

Giacomin, G.; Toninelli, F. L. Smoothing effect of quenched disorder on polymer depinning transitions, Comm. Math. Phys., Volume 266 (2006), pp. 1-16 (ISSN: 0010-3616) | DOI | MR | Zbl

Harris, A. B. Effect of random defects on the critical behaviour of Ising models, J. Phys. C, Volume 7 (1974), pp. 1671-1692

Holley, R. Remarks on the FKG inequalities, Comm. Math. Phys., Volume 36 (1974), pp. 227-231 http://projecteuclid.org/euclid.cmp/1103859732 (ISSN: 0010-3616) | DOI | MR

Hu, Y.; Shi, Z. Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees, Ann. Probab., Volume 37 (2009), pp. 742-789 (ISSN: 0091-1798) | DOI | MR | Zbl

Lacoin, H. New bounds for the free energy of directed polymers in dimension 1+1 and 1+2 , Comm. Math. Phys., Volume 294 (2010), pp. 471-503 (ISSN: 0010-3616) | DOI | MR | Zbl

Lacoin, H. The martingale approach to disorder irrelevance for pinning models, Electron. Commun. Probab., Volume 15 (2010), pp. 418-427 | DOI | MR | Zbl

Lacoin, H. Non-coincidence of quenched and annealed connective constants on the supercritical planar percolation cluster, Probab. Theory Related Fields, Volume 159 (2014), pp. 777-808 (ISSN: 0178-8051) | DOI | MR | Zbl

Lawler, G. F.; Limic, V., Cambridge Studies in Advanced Math., 123, Cambridge Univ. Press, 2010, 364 pages (ISBN: 978-0-521-51918-2) | DOI | MR | Zbl

Madaule, T. Maximum of a log-correlated Gaussian field, Ann. Inst. Henri Poincaré Probab. Stat., Volume 51 (2015), pp. 1369-1431 (ISSN: 0246-0203) | DOI | Numdam | MR

Onsager, L. Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev., Volume 65 (1944), pp. 117-149 (ISSN: 0031-899X) | DOI | MR | Zbl

Toninelli, F. L. A replica-coupling approach to disordered pinning models, Comm. Math. Phys., Volume 280 (2008), pp. 389-401 (ISSN: 0010-3616) | DOI | MR | Zbl

Toninelli, F. L. Coarse graining, fractional moments and the critical slope of random copolymers, Electron. J. Probab., Volume 14 (2009), pp. no. 20, 531-547 | DOI | MR | Zbl

Velenik, Y. Localization and delocalization of random interfaces, Probab. Surv., Volume 3 (2006), pp. 112-169 | DOI | MR | Zbl

Yilmaz, A.; Zeitouni, O. Differing averaged and quenched large deviations for random walks in random environments in dimensions two and three, Comm. Math. Phys., Volume 300 (2010), pp. 243-271 (ISSN: 0010-3616) | DOI | MR | Zbl

Cité par Sources :