Spectral analysis of Morse-Smale gradient flows
[Analyse spectrale des flots de gradients Morse-Smale]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 6, pp. 1403-1458.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Sur une variété lisse, compacte et orientée sans bord, nous donnons une description complète de la fonction de corrélation des flots de gradients Morse-Smale vérifiant certaines hypothèses de non-résonance. Ce résultat est obtenu en analysant précisément le spectre du générateur d'un tel flot agissant sur certains espaces de Sobolev anisotropes. Nous démontrons en particulier que ce spectre dynamique est donné par des combinaisons linéaires à coefficients entiers des exposants de Lyapunov aux points critiques de la fonction de Morse. Grâce à cette analyse spectrale et en analogie complète avec la théorie de Hodge-de Rham, nous interprétons le complexe de Morse comme l'image du complexe de de Rham par le projecteur sur le noyau du générateur du flot. Ceci nous permet de retrouver des résultats classiques de topologie différentielle comme les inégalités de Morse et la dualité de Poincaré.

On a smooth, compact and oriented manifold without boundary, we give a complete description of the correlation function of a Morse-Smale gradient flow satisfying a certain nonresonance assumption. This is done by analyzing precisely the spectrum of the generator of such a flow acting on certain anisotropic spaces of currents. In particular, we prove that this dynamical spectrum is given by linear combinations with integer coefficients of the Lyapunov exponents at the critical points of the Morse function. Via this spectral analysis and in analogy with Hodge-de Rham theory, we give an interpretation of the Morse complex as the image of the de Rham complex under the spectral projector on the kernel of the generator of the flow. This allows us to recover classical results from differential topology such as the Morse inequalities and Poincaré duality.

Publié le :
DOI : 10.24033/asens.2412
Classification : 58J50, 37D15
Keywords: Hyperbolic dynamical systems, Morse-Smale flows, Pollicott-Ruelle resonances, anisotropic Sobolev spaces, microlocal analysis, Morse complex.
Mot clés : Systèmes dynamiques hyperboliques, flots Morse-Smale, résonances de Pollicott-Ruelle, espaces de Sobolev anisotropes, analyse microlocale, complexe de Morse.
@article{ASENS_2019__52_6_1403_0,
     author = {Dang, Nguyen Viet and Rivi\`ere, Gabriel},
     title = {Spectral analysis  of {Morse-Smale} gradient flows},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1403--1458},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 52},
     number = {6},
     year = {2019},
     doi = {10.24033/asens.2412},
     mrnumber = {4061023},
     zbl = {1448.37029},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.2412/}
}
TY  - JOUR
AU  - Dang, Nguyen Viet
AU  - Rivière, Gabriel
TI  - Spectral analysis  of Morse-Smale gradient flows
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2019
SP  - 1403
EP  - 1458
VL  - 52
IS  - 6
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://archive.numdam.org/articles/10.24033/asens.2412/
DO  - 10.24033/asens.2412
LA  - en
ID  - ASENS_2019__52_6_1403_0
ER  - 
%0 Journal Article
%A Dang, Nguyen Viet
%A Rivière, Gabriel
%T Spectral analysis  of Morse-Smale gradient flows
%J Annales scientifiques de l'École Normale Supérieure
%D 2019
%P 1403-1458
%V 52
%N 6
%I Société Mathématique de France. Tous droits réservés
%U http://archive.numdam.org/articles/10.24033/asens.2412/
%R 10.24033/asens.2412
%G en
%F ASENS_2019__52_6_1403_0
Dang, Nguyen Viet; Rivière, Gabriel. Spectral analysis  of Morse-Smale gradient flows. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 6, pp. 1403-1458. doi : 10.24033/asens.2412. http://archive.numdam.org/articles/10.24033/asens.2412/

Atiyah, M. F.; Bott, R. A Lefschetz fixed point formula for elliptic complexes. I, Ann. of Math., Volume 86 (1967), pp. 374-407 (ISSN: 0003-486X) | DOI | MR | Zbl

Anosov, D. V. Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov., Volume 90 (1967), 209 pages (ISSN: 0371-9685) | MR | Zbl

Brouder, C.; Dang, N. V.; Hélein, F. Continuity of the fundamental operations on distributions having a specified wave front set (with a counterexample by Semyon Alesker), Studia Math., Volume 232 (2016), pp. 201-226 (ISSN: 0039-3223) | MR | Zbl

Bandtlow, O. F.; Just, W.; Slipantschuk, J. Spectral structure of transfer operators for expanding circle maps, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 34 (2017), pp. 31-43 (ISSN: 0294-1449) | DOI | Numdam | MR | Zbl

Blank, M.; Keller, G.; Liverani, C. Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity, Volume 15 (2002), pp. 1905-1973 (ISSN: 0951-7715) | DOI | MR | Zbl

Butterley, O.; Liverani, C. Smooth Anosov flows: correlation spectra and stability, J. Mod. Dyn., Volume 1 (2007), pp. 301-322 (ISSN: 1930-5311) | DOI | MR | Zbl

Bandtlow, O. F.; Naud, F. Lower bounds for the Ruelle spectrum of analytic expanding circle maps, Ergodic Theory Dynam. Systems, Volume 39 (2019), pp. 289-310 (ISSN: 0143-3857) | DOI | MR | Zbl

Bott, R. Morse theory indomitable, Inst. Hautes Études Sci. Publ. Math., Volume 68 (1988), pp. 99-114 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Bowen, R.; Ruelle, D. The ergodic theory of Axiom A flows, Invent. math., Volume 29 (1975), pp. 181-202 (ISSN: 0020-9910) | DOI | MR | Zbl

Baladi, V.; Tsujii, M. Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier, Volume 57 (2007), pp. 127-154 http://aif.cedram.org/item?id=AIF_2007__57_1_127_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl

Baladi, V.; Tsujii, M., Geometric and probabilistic structures in dynamics (Contemp. Math.), Volume 469, Amer. Math. Soc., 2008, pp. 29-68 | DOI | MR | Zbl

Chen, K.-T. Equivalence and decomposition of vector fields about an elementary critical point, Amer. J. Math., Volume 85 (1963), pp. 693-722 (ISSN: 0002-9327) | DOI | MR | Zbl

Dang, N. V. The extension of distributions on manifolds, a microlocal approach, Ann. Henri Poincaré, Volume 17 (2016), pp. 819-859 (ISSN: 1424-0637) | DOI | MR | Zbl

de Rham, G., Grundl. math. Wiss., 266, Springer, 1984, 167 pages (ISBN: 3-540-13463-8) | DOI | MR | Zbl

Dyatlov, S.; Guillarmou, C. Pollicott-Ruelle resonances for open systems, Ann. Henri Poincaré, Volume 17 (2016), pp. 3089-3146 (ISSN: 1424-0637) | DOI | MR | Zbl

Dolgopyat, D. On decay of correlations in Anosov flows, Ann. of Math., Volume 147 (1998), pp. 357-390 (ISSN: 0003-486X) | DOI | MR | Zbl

Dang, N. V.; Rivière, G. Equidistribution of the conormal cycle of random nodal sets, J. Eur. Math. Soc. (JEMS), Volume 20 (2018), pp. 3017-3071 (ISSN: 1435-9855) | DOI | MR | Zbl

Dyatlov, S.; Zworski, M. Dynamical zeta functions for Anosov flows via microlocal analysis, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016), pp. 543-577 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Dyatlov, S.; Zworski, M., Graduate Studies in Math., 200, 2019 | MR

Engel, K.-J.; Nagel, R., Graduate Texts in Math., 194, Springer, 2000, 586 pages (ISBN: 0-387-98463-1) | MR | Zbl

Frenkel, E.; Losev, A.; Nekrasov, N. Instantons beyond topological theory. I, J. Inst. Math. Jussieu, Volume 10 (2011), pp. 463-565 (ISSN: 1474-7480) | DOI | MR | Zbl

Faure, F.; Roy, N.; Sjöstrand, J. Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances, Open Math. J., Volume 1 (2008), pp. 35-81 | DOI | MR | Zbl

Faure, F.; Sjöstrand, J. Upper bound on the density of Ruelle resonances for Anosov flows, Comm. Math. Phys., Volume 308 (2011), pp. 325-364 (ISSN: 0010-3616) | DOI | MR | Zbl

Faure, F.; Tsujii, M. Astérisque, Astérisque, 375, 2015, 222 pages (ISBN: 978-2-85629-823-7, ISSN: 0303-1179) | MR

Faure, F.; Tsujii, M. The semiclassical zeta function for geodesic flows on negatively curved manifolds, Inventiones math., Volume 208 (2017), pp. 851-998 | DOI | MR | Zbl

Gouëzel, S.; Liverani, C. Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties, J. Differential Geom., Volume 79 (2008), pp. 433-477 http://projecteuclid.org/euclid.jdg/1213798184 (ISSN: 0022-040X) | MR | Zbl

Giulietti, P.; Liverani, C.; Pollicott, M. Anosov flows and dynamical zeta functions, Ann. of Math., Volume 178 (2013), pp. 687-773 (ISSN: 0003-486X) | DOI | MR | Zbl

Gouëzel, S. Spectre du flot géodésique en courbure négative [d'après F. Faure et M. Tsujii], Séminaire Bourbaki, Vol. 2014/2015, exp. no 1098, Astérisque, Volume 380 (2016), pp. 325-353 (ISBN: 978-2-85629-836-7, ISSN: 0303-1179) | MR | Zbl

Hartman, P. A lemma in the theory of structural stability of differential equations, Proc. Amer. Math. Soc., Volume 11 (1960), pp. 610-620 (ISSN: 0002-9939) | DOI | MR | Zbl

Harvey, F. R.; Lawson, H. B. J., Surveys in differential geometry (Surv. Differ. Geom.), Volume 7, Int. Press, 2000, pp. 259-311 | DOI | MR | Zbl

Harvey, F. R.; Lawson, H. B. J. Finite volume flows and Morse theory, Ann. of Math., Volume 153 (2001), pp. 1-25 (ISSN: 0003-486X) | DOI | MR | Zbl

Hörmander, L., Springer Study Edition, Springer, 1990, 440 pages (ISBN: 3-540-52343-X) | DOI | MR | Zbl

Helffer, B.; Sjöstrand, J. Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.), Volume 24-25 (1986), pp. 1-228 (ISSN: 0037-9484) | Numdam | MR | Zbl

Igusa, J.-i., Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 59, Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi, 1978, 175 pages (ISBN: 0-387-08944-6) | MR | Zbl

Laudenbach, F., Éditions de l'École polytechnique, Palaiseau, 2012, 182 pages (ISBN: 978-2-7302-1585-5) | MR

Laudenbach, F. On the Thom-Smale complex, An extension of a theorem by Cheeger and Müller (Bismut, J.-M.; Zhang, W., eds.) (Astérisque), Volume 205 (1992) (ISSN: 0303-1179) | MR

Liverani, C. On contact Anosov flows, Ann. of Math., Volume 159 (2004), pp. 1275-1312 (ISSN: 0003-486X) | DOI | MR | Zbl

Minervini, G. A current approach to Morse and Novikov theories, Rend. Mat. Appl., Volume 36 (2015), pp. 95-195 (ISSN: 1120-7183) | MR | Zbl

Nelson, E., Mathematical Notes, Princeton Univ. Press, N.J.; University of Tokyo Press, Tokyo, 1969, 118 pages | MR | Zbl

Nicolaescu, L. I. Memoirs of the American Mathematical Society, Mem. Amer. Math. Soc., 208, 2010 (ISBN: 978-0-8218-4870-8, ISSN: 0065-9266) | DOI | MR | Zbl

Pollicott, M. On the rate of mixing of Axiom A flows, Invent. math., Volume 81 (1985), pp. 413-426 (ISSN: 0020-9910) | DOI | MR | Zbl

Ruelle, D. One-dimensional Gibbs states and Axiom A diffeomorphisms, J. Differential Geom., Volume 25 (1987), pp. 117-137 http://projecteuclid.org/euclid.jdg/1214440727 (ISSN: 0022-040X) | MR | Zbl

Ruelle, D. Resonances for Axiom 𝐀 flows, J. Differential Geom., Volume 25 (1987), pp. 99-116 http://projecteuclid.org/euclid.jdg/1214440726 (ISSN: 0022-040X) | MR | Zbl

Schwartz, L., Hermann, 1966, 420 pages | MR | Zbl

Sinaĭ, J. G. Gibbs measures in ergodic theory, Uspehi Mat. Nauk, Volume 27 (1972), pp. 21-64 (ISSN: 0042-1316) | MR | Zbl

Smale, S. Morse inequalities for a dynamical system, Bull. Amer. Math. Soc., Volume 66 (1960), pp. 43-49 (ISSN: 0002-9904) | DOI | MR | Zbl

Smale, S. On gradient dynamical systems, Ann. of Math., Volume 74 (1961), pp. 199-206 (ISSN: 0003-486X) | DOI | MR | Zbl

Smale, S. Differentiable dynamical systems, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 747-817 (ISSN: 0002-9904) | DOI | MR | Zbl

Thom, R. Sur une partition en cellules associée à une fonction sur une variété, C. R. Acad. Sci. Paris, Volume 228 (1949), pp. 973-975 (ISSN: 0001-4036) | MR | Zbl

Tsujii, M. Quasi-compactness of transfer operators for contact Anosov flows, Nonlinearity, Volume 23 (2010), pp. 1495-1545 (ISSN: 0951-7715) | DOI | MR | Zbl

Tsujii, M. Contact Anosov flows and the Fourier-Bros-Iagolnitzer transform, Ergodic Theory Dynam. Systems, Volume 32 (2012), pp. 2083-2118 (ISSN: 0143-3857) | DOI | MR | Zbl

Weber, J. The Morse-Witten complex via dynamical systems, Expo. Math., Volume 24 (2006), pp. 127-159 (ISSN: 0723-0869) | DOI | MR | Zbl

Witten, E. Supersymmetry and Morse theory, J. Differential Geom., Volume 17 (1982), pp. 661-692 http://projecteuclid.org/euclid.jdg/1214437492 (ISSN: 0022-040X) | MR | Zbl

Zworski, M., Graduate Studies in Math., 138, Amer. Math. Soc., 2012, 431 pages (ISBN: 978-0-8218-8320-4) | DOI | MR | Zbl

Cité par Sources :