Asymptotic geometry of negatively curved manifolds of finite volume
[Géométrie asymptotique des variétés de volume fini à courbure négative]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 6, pp. 1459-1485.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Nous décrivons le comportement asymptotique de variétés Riemanniennes simplement connexes X à courbure strictement négative, dont le groupe d'isométries contient des sous-groupes discrets Γ de co-volume fini. Plus précisément, nous montrons que lorsque la courbure est asymptotiquement 1/4-pincée, le groupe Γ est alors divergent et la mesure de Bowen-Margulis associée est finie; de plus, le volume des boules B(x,R) de X est asymptotiquement équivalent à la fonction c(x)eδR, où δ désigne l'exposant de Poincaré de Γ. Ce résultat généralise le célèbre théorème de Margulis au cas des réseaux non-uniformes. Nous construisons aussi toute une série d'exemples de variétés X à courbure strictement négative mais non asymptotiquement 1/4-pincée, pour lesquels le volume des boules B(x,R) de X ne croît pas toujours de façon purement exponentielle.

We study the asymptotic behavior of simply connected Riemannian manifolds X of strictly negative curvature admitting a non-uniform lattice Γ. If the quotient manifold X¯=ΓX is asymptotically 1/4-pinched, we prove that Γ is divergent and UX¯ has finite Bowen-Margulis measure (which is then ergodic and totally conservative with respect to the geodesic flow); moreover, we show that, in this case, the volume growth of balls B(x,R) in X is asymptotically equivalent to a purely exponential function c(x)eδR, where δ is the topological entropy of the geodesic flow of X¯. This generalizes Margulis' celebrated theorem to negatively curved spaces of finite volume. In contrast, we exhibit examples of lattices Γ in negatively curved spaces X (not asymptotically 1/4-pinched) where, depending on the critical exponent of the parabolic subgroups and on the finiteness of the Bowen-Margulis measure, the growth function is exponential, lower-exponential or even upper-exponential.

DOI : 10.24033/asens.2413
Classification : 53C20, 37C35
Mots-clés : Cartan-Hadamard manifold, volume, entropy, Bowen-Margulis measure
@article{ASENS_2019__52_6_1459_0,
     author = {Dal'Bo, Fran\c{c}oise and Peign\'e, Marc and Picaud, Jean-Claude and Sambusetti, Andrea},
     title = {Asymptotic geometry of negatively curved manifolds of finite volume},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1459--1485},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 52},
     number = {6},
     year = {2019},
     doi = {10.24033/asens.2413},
     mrnumber = {4061022},
     zbl = {1479.53045},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.2413/}
}
TY  - JOUR
AU  - Dal'Bo, Françoise
AU  - Peigné, Marc
AU  - Picaud, Jean-Claude
AU  - Sambusetti, Andrea
TI  - Asymptotic geometry of negatively curved manifolds of finite volume
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2019
SP  - 1459
EP  - 1485
VL  - 52
IS  - 6
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://archive.numdam.org/articles/10.24033/asens.2413/
DO  - 10.24033/asens.2413
LA  - en
ID  - ASENS_2019__52_6_1459_0
ER  - 
%0 Journal Article
%A Dal'Bo, Françoise
%A Peigné, Marc
%A Picaud, Jean-Claude
%A Sambusetti, Andrea
%T Asymptotic geometry of negatively curved manifolds of finite volume
%J Annales scientifiques de l'École Normale Supérieure
%D 2019
%P 1459-1485
%V 52
%N 6
%I Société Mathématique de France. Tous droits réservés
%U http://archive.numdam.org/articles/10.24033/asens.2413/
%R 10.24033/asens.2413
%G en
%F ASENS_2019__52_6_1459_0
Dal'Bo, Françoise; Peigné, Marc; Picaud, Jean-Claude; Sambusetti, Andrea. Asymptotic geometry of negatively curved manifolds of finite volume. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 6, pp. 1459-1485. doi : 10.24033/asens.2413. http://archive.numdam.org/articles/10.24033/asens.2413/

Bonk, M.; Kleiner, B. Rigidity for quasi-Möbius group actions, J. Differential Geom., Volume 61 (2002), pp. 81-106 http://projecteuclid.org/euclid.jdg/1090351321 (ISSN: 0022-040X) | MR | Zbl

Belegradek, I.; Kapovitch, V. Pinching estimates for negatively curved manifolds with nilpotent fundamental groups, Geom. Funct. Anal., Volume 15 (2005), pp. 929-938 (ISSN: 1016-443X) | DOI | MR | Zbl

Buser, P.; Karcher, H., Astérisque, 81, Société Mathématique de France, 1981, 148 pages | Numdam | MR | Zbl

Bowditch, B. H. Geometrical finiteness with variable negative curvature, Duke Math. J., Volume 77 (1995), pp. 229-274 (ISSN: 0012-7094) | DOI | MR | Zbl

Corlette, K.; Iozzi, A. Limit sets of discrete groups of isometries of exotic hyperbolic spaces, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 1507-1530 (ISSN: 0002-9947) | DOI | MR | Zbl

Courtois, G., Géométries à courbure négative ou nulle, groupes discrets et rigidités (Sémin. Congr.), Volume 18, Soc. Math. France, 2009, pp. 293-319 | MR | Zbl

Castillon, P.; Sambusetti, A. On asymptotically harmonic manifolds of negative curvature, Math. Z., Volume 277 (2014), pp. 1049-1072 (ISSN: 0025-5874) | DOI | MR | Zbl

Dal'bo, F.; Otal, J.-P.; Peigné, M. Séries de Poincaré des groupes géométriquement finis, Israel J. Math., Volume 118 (2000), pp. 109-124 (ISSN: 0021-2172) | DOI | MR | Zbl

Dal'bo, F.; Peigné, M. Groupes du ping-pong et géodésiques fermées en courbure -1 , Ann. Inst. Fourier, Volume 46 (1996), pp. 755-799 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl

Dal'Bo, F.; Peigné, M.; Picaud, J.-C.; Sambusetti, A. On the growth of nonuniform lattices in pinched negatively curved manifolds, J. reine angew. Math., Volume 627 (2009), pp. 31-52 (ISSN: 0075-4102) | DOI | MR | Zbl

Dal'Bo, F.; Peigné, M.; Picaud, J.-C.; Sambusetti, A. On the growth of quotients of Kleinian groups, Ergodic Theory Dynam. Systems, Volume 31 (2011), pp. 835-851 (ISSN: 0143-3857) | DOI | MR | Zbl

Dal'bo, F.; Peigné, M.; Picaud, J.-C.; Sambusetti, A. Convergence and counting in infinite measure, Ann. Inst. Fourier, Volume 67 (2017), pp. 483-520 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl

Eberlein, P. B., Chicago Lectures in Mathematics, University of Chicago Press, 1996, 449 pages (ISBN: 0-226-18197-9; 0-226-18198-7) | MR | Zbl

Heintze, E.; Im Hof, H.-C. Geometry of horospheres, J. Differential Geom., Volume 12 (1977), pp. 481-491 http://projecteuclid.org/euclid.jdg/1214434219 (ISSN: 0022-040X) | MR | Zbl

Hersonsky, S.; Paulin, F. Counting orbit points in coverings of negatively curved manifolds and Hausdorff dimension of cusp excursions, Ergodic Theory Dynam. Systems, Volume 24 (2004), pp. 803-824 (ISSN: 0143-3857) | DOI | MR | Zbl

Knieper, G. Spherical means on compact Riemannian manifolds of negative curvature, Differential Geom. Appl., Volume 4 (1994), pp. 361-390 (ISSN: 0926-2245) | DOI | MR | Zbl

Knieper, G. On the asymptotic geometry of nonpositively curved manifolds, Geom. Funct. Anal., Volume 7 (1997), pp. 755-782 (ISSN: 1016-443X) | DOI | MR | Zbl

Margulis, G. A. Certain applications of ergodic theory to the investigation of manifolds of negative curvature, Funkcional. Anal. i Priložen., Volume 3 (1969), pp. 89-90 (ISSN: 0374-1990) | MR | Zbl

Otal, J.-P.; Peigné, M. Principe variationnel et groupes kleiniens, Duke Math. J., Volume 125 (2004), pp. 15-44 (ISSN: 0012-7094) | DOI | MR | Zbl

Peigné, M.; Sambusetti, A. Entropy rigidity of negatively curved manifolds of finite volume, Math. Z., Volume 293 (2019), pp. 609-627 (ISSN: 0025-5874) | DOI | MR | Zbl

Pollicott, M.; Sharp, R. Orbit counting for some discrete groups acting on simply connected manifolds with negative curvature, Invent. math., Volume 117 (1994), pp. 275-302 (ISSN: 0020-9910) | DOI | MR | Zbl

Roblin, T. Mémoires de la Société Mathématique de France. Nouvelle Série, Mém. Soc. Math. Fr., 95, 2003, 96 pages (ISSN: 0249-633X) | DOI | Numdam | MR | Zbl

Sambusetti, A. Asymptotic properties of coverings in negative curvature, Geom. Topol., Volume 12 (2008), pp. 617-637 (ISSN: 1465-3060) | DOI | MR | Zbl

Sullivan, D. The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math., Volume 50 (1979), pp. 171-202 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Cité par Sources :