@article{BSMF_1962__90__487_0, author = {Nash, J.}, title = {Le probl\`eme de {Cauchy} pour les \'equations diff\'erentielles d'un fluide g\'en\'eral}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {487--497}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {90}, year = {1962}, doi = {10.24033/bsmf.1586}, mrnumber = {26 #6590}, zbl = {0113.19405}, language = {fr}, url = {https://www.numdam.org/articles/10.24033/bsmf.1586/} }
TY - JOUR AU - Nash, J. TI - Le problème de Cauchy pour les équations différentielles d'un fluide général JO - Bulletin de la Société Mathématique de France PY - 1962 SP - 487 EP - 497 VL - 90 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.1586/ DO - 10.24033/bsmf.1586 LA - fr ID - BSMF_1962__90__487_0 ER -
%0 Journal Article %A Nash, J. %T Le problème de Cauchy pour les équations différentielles d'un fluide général %J Bulletin de la Société Mathématique de France %D 1962 %P 487-497 %V 90 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.1586/ %R 10.24033/bsmf.1586 %G fr %F BSMF_1962__90__487_0
Nash, J. Le problème de Cauchy pour les équations différentielles d'un fluide général. Bulletin de la Société Mathématique de France, Tome 90 (1962), pp. 487-497. doi : 10.24033/bsmf.1586. https://www.numdam.org/articles/10.24033/bsmf.1586/
[1] Interior estimates for parabolic systems of partial differential equations, J. Math. and Mech., t. 7, 1958, p. 393-418. | MR | Zbl
. -[2] Fluid mechanics [Translated from Mekhanika splošnykh sred, Izdanie vtoroe. Moscou, 1954]. - London, Pergamon Press, 1959.
and . -[3] Propriétés des solutions du système parabolique d'équations aux dérivées partielles, Math. Scand., t. 6, 1958, p. 237-262. | Zbl
. -[4] The uniqueness of compressible fluid motions, Arch. for rat. Mech. and Anal.. t. 3, 1959, p. 271-288. | MR | Zbl
. -- Strong Solutions to 3D Compressible Navier–Stokes Equations with Two-Directional Short Pulse Initial Data, Bulletin of the Malaysian Mathematical Sciences Society, Volume 48 (2025) no. 3 | DOI:10.1007/s40840-025-01861-1
- Serrin-type blowup Criterion for the degenerate compressible Navier-Stokes equations, Communications in Analysis and Mechanics, Volume 17 (2025) no. 1, p. 145 | DOI:10.3934/cam.2025007
- Smooth imploding solutions for 3D compressible fluids, Forum of Mathematics, Pi, Volume 13 (2025) | DOI:10.1017/fmp.2024.12
- Global well-posedness and stability of classical solutions to the pressureless Navier-Stokes system in 3D, Journal of Differential Equations, Volume 422 (2025), p. 696 | DOI:10.1016/j.jde.2025.01.074
- Global well-posedness and large-time behavior for the 3D full compressible Navier-Stokes equations with density-dependent viscosity and vacuum, Journal of Differential Equations, Volume 426 (2025), p. 466 | DOI:10.1016/j.jde.2025.01.072
- Zero-Mach limit of the compressible Navier-Stokes system on 2D exterior domains with non-slip boundary conditions for all time, Journal of Differential Equations, Volume 428 (2025), p. 291 | DOI:10.1016/j.jde.2025.02.030
- Global existence and optimal time decay rate to one-dimensional two-phase flow model, Journal of Differential Equations, Volume 433 (2025), p. 113210 | DOI:10.1016/j.jde.2025.02.081
- On the Cauchy problem of 2D compressible fluid model with the horizontal thermal gradient effect, Journal of Mathematical Analysis and Applications, Volume 541 (2025) no. 2, p. 128722 | DOI:10.1016/j.jmaa.2024.128722
- Global Classical Solution to the Strip Problem of 2D Compressible Navier–Stokes System with Vacuum and Large Initial Data, Journal of Mathematical Fluid Mechanics, Volume 27 (2025) no. 1 | DOI:10.1007/s00021-024-00900-4
- Global Well-Posedness and Asymptotic Behavior of Strong Solutions to an Initial-Boundary Value Problem of 3D Full Compressible MHD Equations, Journal of Mathematical Fluid Mechanics, Volume 27 (2025) no. 1 | DOI:10.1007/s00021-024-00915-x
- On the existence of globally defined weak solutions to three-dimensional compressible magneto-micropolar fluids with discontinuous initial data and vacuum, Journal of Mathematical Physics, Volume 66 (2025) no. 1 | DOI:10.1063/5.0240277
- Global existence and large-time behavior of solutions to one-dimensional compressible Navier–Stokes system with outer pressure in the half-space, Journal of Mathematical Physics, Volume 66 (2025) no. 1 | DOI:10.1063/5.0244202
- Blow‐up of smooth solutions to the relaxed compressible Navier‐Stokes equations, Mathematical Methods in the Applied Sciences, Volume 48 (2025) no. 4, p. 4893 | DOI:10.1002/mma.10582
- On Global and Decay Solution of Viscous Compressible MHD Equations, Studies in Applied Mathematics, Volume 154 (2025) no. 1 | DOI:10.1111/sapm.12794
- Sharp decay characterization for the compressible Navier-Stokes equations, Advances in Mathematics, Volume 456 (2024), p. 109905 | DOI:10.1016/j.aim.2024.109905
- Initial boundary value problem and exponential stability for the planar magnetohydrodynamics equations with temperature-dependent viscosity, Advances in Nonlinear Analysis, Volume 13 (2024) no. 1 | DOI:10.1515/anona-2024-0013
- Full compressible Navier-Stokes equations with the Robin boundary condition on temperature, Applicable Analysis, Volume 103 (2024) no. 1, p. 296 | DOI:10.1080/00036811.2023.2185612
- On initial boundary value problems for the compressible Navier–Stokes system with temperature dependent heat conductivity, Archiv der Mathematik, Volume 122 (2024) no. 1, p. 71 | DOI:10.1007/s00013-023-01926-2
- Global Spherically Symmetric Solutions of the Multidimensional Full Compressible Navier–Stokes Equations with Large Data, Archive for Rational Mechanics and Analysis, Volume 248 (2024) no. 6 | DOI:10.1007/s00205-024-02018-3
- Convergence of Numerical Methods for the Navier–Stokes–Fourier System Driven by Uncertain Initial/Boundary Data, Foundations of Computational Mathematics (2024) | DOI:10.1007/s10208-024-09666-7
- Decay of the compressible Navier-Stokes equations with hyperbolic heat conduction, Journal of Differential Equations, Volume 388 (2024), p. 1 | DOI:10.1016/j.jde.2023.12.042
- Global existence and optimal decay rate to the compressible FENE dumbbell model, Journal of Differential Equations, Volume 404 (2024), p. 130 | DOI:10.1016/j.jde.2024.05.044
- Global well-posedness and asymptotic behavior for the Euler-alignment system with pressure, Journal of Differential Equations, Volume 407 (2024), p. 269 | DOI:10.1016/j.jde.2024.06.020
- Global strong solutions with large oscillations to the 3D full compressible Navier–Stokes equations without heat conductivity, Journal of Evolution Equations, Volume 24 (2024) no. 3 | DOI:10.1007/s00028-024-01002-4
- Global Solutions of 3D Isentropic Compressible Navier–Stokes Equations with Two Slow Variables, Journal of Mathematical Fluid Mechanics, Volume 26 (2024) no. 2 | DOI:10.1007/s00021-024-00855-6
- Local Weak Solution of the Isentropic Compressible Navier–Stokes Equations with Variable Viscosity, Journal of Mathematical Fluid Mechanics, Volume 26 (2024) no. 3 | DOI:10.1007/s00021-024-00871-6
- Blowup Criterion for Viscous Non-baratropic Flows with Zero Heat Conduction Involving Velocity Divergence, Journal of Mathematical Fluid Mechanics, Volume 26 (2024) no. 3 | DOI:10.1007/s00021-024-00887-y
- Global existence for a class of large solution to compressible Navier–Stokes equations with vacuum, Mathematische Annalen, Volume 388 (2024) no. 2, p. 2163 | DOI:10.1007/s00208-023-02573-2
- On Nash’s conjecture for models of viscous, compressible, and heat conducting fluids, Mathematische Annalen, Volume 390 (2024) no. 1, p. 1201 | DOI:10.1007/s00208-023-02778-5
- Vanishing viscosity limit to the planar rarefaction wave with vacuum for 3-D full compressible Navier–Stokes equations with temperature-dependent transport coefficients, Mathematische Annalen, Volume 390 (2024) no. 3, p. 3513 | DOI:10.1007/s00208-024-02840-w
- Global well-posedness and asymptotic behavior in critical spaces for the compressible Euler system with velocity alignment, Nonlinearity, Volume 37 (2024) no. 2, p. 025007 | DOI:10.1088/1361-6544/ad140b
- Instantaneous Unboundedness of the Entropy and Uniform Positivity of the Temperature for the Compressible Navier–Stokes Equations with Fast Decay Density, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 3, p. 3004 | DOI:10.1137/23m1594352
- Exponential decay for inhomogeneous viscous flows on the torus, Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 2 | DOI:10.1007/s00033-024-02198-8
- The Regularity and Uniqueness of a Global Solution to the Isentropic Navier-Stokes Equation with Rough Initial Data, Acta Mathematica Scientia, Volume 43 (2023) no. 4, p. 1675 | DOI:10.1007/s10473-023-0415-x
- On Regular Solutions for Three-Dimensional Full Compressible Navier–Stokes Equations with Degenerate Viscosities and Far Field Vacuum, Archive for Rational Mechanics and Analysis, Volume 247 (2023) no. 1 | DOI:10.1007/s00205-022-01840-x
- Optimal decay of compressible Navier-Stokes equations with or without potential force, Journal of Differential Equations, Volume 342 (2023), p. 63 | DOI:10.1016/j.jde.2022.09.030
- Global well-posedness and exponential decay rates of the strong solutions to the two-dimensional full compressible magnetohydrodynamics equations with vacuum in some class of large initial data, Journal of Differential Equations, Volume 359 (2023), p. 211 | DOI:10.1016/j.jde.2023.02.032
- Global solutions of 2D isentropic compressible Navier-Stokes equations with one slow variable, Journal of Differential Equations, Volume 376 (2023), p. 406 | DOI:10.1016/j.jde.2023.08.041
- The initial value problem for the equations of motion of fractional compressible viscous fluids, Journal of Differential Equations, Volume 377 (2023), p. 369 | DOI:10.1016/j.jde.2023.09.012
- Blow-up criteria for a fluid dynamical model arising in astrophysics, Journal of Hyperbolic Differential Equations, Volume 20 (2023) no. 03, p. 629 | DOI:10.1142/s0219891623500194
- Global strong solutions of 3D compressible isothermal magnetohydrodynamics, Journal of Inequalities and Applications, Volume 2023 (2023) no. 1 | DOI:10.1186/s13660-023-02958-6
- Global existence and decay of strong solutions to the compressible Navier-Stokes-Poisson equations in bounded domains, Journal of Mathematical Analysis and Applications, Volume 525 (2023) no. 1, p. 127223 | DOI:10.1016/j.jmaa.2023.127223
- Blow up Criteria for the 2D Compressible Navier-Stokes Equations in Bounded Domains with Vacuum, Journal of Mathematical Fluid Mechanics, Volume 25 (2023) no. 1 | DOI:10.1007/s00021-022-00744-w
- Local Existence and Uniqueness of Heat Conductive Compressible Navier–Stokes Equations in the Presence of Vacuum Without Initial Compatibility Conditions, Journal of Mathematical Fluid Mechanics, Volume 25 (2023) no. 1 | DOI:10.1007/s00021-022-00761-9
- Global classical solutions to the compressible Navier–Stokes equations with Navier-type slip boundary condition in 2D bounded domains, Journal of Mathematical Physics, Volume 64 (2023) no. 11 | DOI:10.1063/5.0142015
- On the regularity criteria for the three‐dimensional compressible Navier–Stokes system in Lorentz spaces, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 4, p. 4763 | DOI:10.1002/mma.8802
- On the vanishing elastic limit of compressible liquid crystal material flow, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 9, p. 10480 | DOI:10.1002/mma.9134
- Critical regularity issues for the compressible Navier–Stokes system in bounded domains, Mathematische Annalen, Volume 387 (2023) no. 3-4, p. 1903 | DOI:10.1007/s00208-022-02501-w
- The Cauchy Problem for the \(\boldsymbol{N}\)-Dimensional Compressible Navier–Stokes Equations without Heat Conductivity, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 2, p. 1439 | DOI:10.1137/22m1504998
- Propagation of Rough Initial Data for Navier–Stokes Equation, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 2, p. 966 | DOI:10.1137/22m1474540
- Immediate Blowup of Entropy-Bounded Classical Solutions to the Vacuum Free Boundary Problem of Nonisentropic Compressible Navier–Stokes Equations, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 3, p. 1524 | DOI:10.1137/22m1493732
- Global Existence Versus Blow-Up for Multidimensional Hyperbolized Compressible Navier–Stokes Equations, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 5, p. 4788 | DOI:10.1137/22m1497468
- Local and global well-posedness of entropy-bounded solutions to the compressible Navier-Stokes equations in multi-dimensions, Science China Mathematics, Volume 66 (2023) no. 10, p. 2219 | DOI:10.1007/s11425-022-2047-0
- A particle method for 1‐D compressible fluid flow, Studies in Applied Mathematics, Volume 151 (2023) no. 4, p. 1282 | DOI:10.1111/sapm.12623
- On Some Types of Initial-Boundary Value Problems for the Compressible Navier–Stokes Equations with Temperature-Dependent and Degenerate Heat Conductivity, The Journal of Geometric Analysis, Volume 33 (2023) no. 11 | DOI:10.1007/s12220-023-01403-w
- Global Solutions to a 3D Axisymmetric Compressible Navier-Stokes System with Density-Dependent Viscosity, Acta Mathematica Scientia, Volume 42 (2022) no. 2, p. 521 | DOI:10.1007/s10473-022-0207-8
- Classical Solutions of the 3D Compressible Fluid-Particle System with a Magnetic Field, Acta Mathematica Scientia, Volume 42 (2022) no. 4, p. 1585 | DOI:10.1007/s10473-022-0417-0
- Global Well-Posedness for the Full Compressible Navier-Stokes Equations, Acta Mathematica Scientia, Volume 42 (2022) no. 5, p. 2131 | DOI:10.1007/s10473-022-0523-z
- On regular solutions to compressible radiation hydrodynamic equations with far field vacuum, Advances in Nonlinear Analysis, Volume 12 (2022) no. 1, p. 54 | DOI:10.1515/anona-2022-0264
- Global Existence of Strong and Weak Solutions to 2D Compressible Navier–Stokes System in Bounded Domains with Large Data and Vacuum, Archive for Rational Mechanics and Analysis, Volume 245 (2022) no. 1, p. 239 | DOI:10.1007/s00205-022-01790-4
- Global Well-Posedness of Compressible Navier–Stokes Equation with $BV\cap L^1$ Initial Data, Archive for Rational Mechanics and Analysis, Volume 245 (2022) no. 1, p. 375 | DOI:10.1007/s00205-022-01787-z
- On global strong solutions to the 3D MHD flows with density-temperature-dependent viscosities, Boundary Value Problems, Volume 2022 (2022) no. 1 | DOI:10.1186/s13661-022-01626-w
- On the cauchy problem of 3D compressible, viscous, heat-conductive navier-stokes-Poisson equations subject to large and non-flat doping profile, Calculus of Variations and Partial Differential Equations, Volume 61 (2022) no. 5 | DOI:10.1007/s00526-022-02280-x
- Entropy‐Bounded Solutions to the One‐Dimensional Heat Conductive Compressible Navier‐Stokes Equations with Far Field Vacuum, Communications on Pure and Applied Mathematics, Volume 75 (2022) no. 11, p. 2393 | DOI:10.1002/cpa.22015
- Navier‐Stokes Equations in Gas Dynamics: Green's Function, Singularity, and Well‐Posedness, Communications on Pure and Applied Mathematics, Volume 75 (2022) no. 2, p. 223 | DOI:10.1002/cpa.22030
- Global Large Solutions to the Cauchy Problem of Planar Magnetohydrodynamics Equations with Temperature-Dependent Coefficients, Journal of Dynamical and Control Systems, Volume 28 (2022) no. 1, p. 163 | DOI:10.1007/s10883-020-09526-x
- Existence of global strong solutions for a reduced gravity two-and-a-half layer model, Journal of Mathematical Analysis and Applications, Volume 509 (2022) no. 2, p. 125989 | DOI:10.1016/j.jmaa.2022.125989
- Steady Compressible Navier–Stokes–Fourier Equations with Dirichlet Boundary Condition for the Temperature, Journal of Mathematical Fluid Mechanics, Volume 24 (2022) no. 1 | DOI:10.1007/s00021-021-00655-2
- Global Strong Solution to the Two-Dimensional Full Compressible Navier–Stokes Equations with Large Viscosity, Journal of Mathematical Fluid Mechanics, Volume 24 (2022) no. 1 | DOI:10.1007/s00021-021-00641-8
- A Numerical Approach for the Existence of Dissipative Weak Solutions to a Compressible Two-fluid Model, Journal of Mathematical Fluid Mechanics, Volume 24 (2022) no. 3 | DOI:10.1007/s00021-022-00706-2
- Global strong solutions to planar radiative magnetohydrodynamic equations with density-dependent viscosity and degenerate heat-conductivity, Journal of Mathematical Physics, Volume 63 (2022) no. 3 | DOI:10.1063/5.0084254
- Ill-posedness for the compressible Navier–Stokes equations under barotropic condition in limiting Besov spaces, Journal of the Mathematical Society of Japan, Volume 74 (2022) no. 2 | DOI:10.2969/jmsj/81598159
- Some Serrin type blow‐up criteria for the three‐dimensional viscous compressible flows with large external potential force, Mathematical Methods in the Applied Sciences, Volume 45 (2022) no. 4, p. 2072 | DOI:10.1002/mma.7908
- Well-posedness and exponential decay for the Navier–Stokes equations of viscous compressible heat-conductive fluids with vacuum, Mathematical Models and Methods in Applied Sciences, Volume 32 (2022) no. 09, p. 1725 | DOI:10.1142/s0218202522500403
- Local-in-time existence of strong solutions to a class of the compressible non-Newtonian Navier–Stokes equations, Mathematische Annalen, Volume 384 (2022) no. 3-4, p. 1057 | DOI:10.1007/s00208-021-02301-8
- Finite time blowup of incompressible flows surrounding compressible bubbles evolving under soft equations of state, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 478 (2022) no. 2262 | DOI:10.1098/rspa.2022.0172
- Global Stabilization of Compressible Flow between Two Moving Pistons, SIAM Journal on Control and Optimization, Volume 60 (2022) no. 2, p. 1117 | DOI:10.1137/21m1413869
- Global Well-Posedness of Classical Solutions to the Cauchy Problem of Two-Dimensional Barotropic Compressible Navier–Stokes System with Vacuum and Large Initial Data, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 3, p. 3192 | DOI:10.1137/21m1440943
- Global Regular Solutions for one-dimensional Degenerate Compressible Navier–Stokes Equations with Large Data and Far Field Vacuum, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 4, p. 4658 | DOI:10.1137/21m1464609
- Local Strong Solutions to the Full Compressible Navier–Stokes System with Temperature-Dependent Viscosity and Heat Conductivity, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 5, p. 5588 | DOI:10.1137/21m1419544
- Local weak solution of the isentropic compressible Navier-Stokes equations in a half-space, Science China Mathematics, Volume 65 (2022) no. 5, p. 993 | DOI:10.1007/s11425-020-1733-4
- Refined blow-up criteria for the three-dimensional viscous compressible flows with large external potential force and general pressure, Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 1 | DOI:10.1007/s00033-021-01652-1
- The stability of contact discontinuity for the planar thermally radiative magnetohydrodynamics with free boundary, Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 3 | DOI:10.1007/s00033-022-01732-w
- Global solution to the compressible non-isothermal nematic liquid crystal equations with constant heat conductivity and vacuum, Advances in Difference Equations, Volume 2021 (2021) no. 1 | DOI:10.1186/s13662-021-03672-7
- Global well-posedness of regular solutions to the three-dimensional isentropic compressible Navier-Stokes equations with degenerate viscosities and vacuum, Advances in Mathematics, Volume 393 (2021), p. 108072 | DOI:10.1016/j.aim.2021.108072
- On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow, Discrete Continuous Dynamical Systems, Volume 41 (2021) no. 7, p. 3489 | DOI:10.3934/dcds.2021005
- Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions, Discrete Continuous Dynamical Systems - B, Volume 26 (2021) no. 10, p. 5383 | DOI:10.3934/dcdsb.2020348
- Well-posedness of the three-dimensional isentropic compressible Navier-Stokes equations with degenerate viscosities and far field vacuum, Journal de Mathématiques Pures et Appliquées, Volume 152 (2021), p. 94 | DOI:10.1016/j.matpur.2021.05.004
- Regularity and uniqueness for the compressible full Navier-Stokes equations, Journal of Differential Equations, Volume 272 (2021), p. 46 | DOI:10.1016/j.jde.2020.09.036
- Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions, Journal of Differential Equations, Volume 274 (2021), p. 543 | DOI:10.1016/j.jde.2020.10.021
- Decay estimates of solutions to the compressible micropolar fluids system in R3, Journal of Differential Equations, Volume 293 (2021), p. 520 | DOI:10.1016/j.jde.2021.05.038
- Existence, stability and long time behaviour of weak solutions of the three-dimensional compressible Navier-Stokes equations with potential force, Journal of Differential Equations, Volume 299 (2021), p. 463 | DOI:10.1016/j.jde.2021.07.027
- Ill-posedness for the Cauchy problem of the two-dimensional compressible Navier-Stokes equations for an ideal gas, Journal of Elliptic and Parabolic Equations, Volume 7 (2021) no. 2, p. 571 | DOI:10.1007/s41808-021-00136-7
- Global existence of large solutions to the planar magnetohydrodynamic equations with zero magnetic diffusivity, Journal of Mathematical Analysis and Applications, Volume 496 (2021) no. 1, p. 124801 | DOI:10.1016/j.jmaa.2020.124801
- On Formation of Singularity for Full Compressible Navier–Stokes System with Zero Heat Conduction, Journal of Mathematical Fluid Mechanics, Volume 23 (2021) no. 2 | DOI:10.1007/s00021-021-00580-4
- On the Breakdown of Regular Solutions with Finite Energy for 3D Degenerate Compressible Navier–Stokes Equations, Journal of Mathematical Fluid Mechanics, Volume 23 (2021) no. 3 | DOI:10.1007/s00021-021-00573-3
- Global existence of strong solutions to MHD with density-depending viscosity and temperature-depending heat-conductivity in unbounded domains, Journal of Mathematical Physics, Volume 62 (2021) no. 1 | DOI:10.1063/5.0039238
- Local weak solution of the isentropic compressible Navier–Stokes equations, Journal of Mathematical Physics, Volume 62 (2021) no. 11 | DOI:10.1063/5.0054450
- Global strong solutions for viscous radiative gas with degenerate temperature dependent heat conductivity in one-dimensional unbounded domains, Journal of Mathematical Physics, Volume 62 (2021) no. 2 | DOI:10.1063/5.0039346
- On the compressible viscous barotropic flows subject to large external potential forces in a half space with Navier's boundary conditions, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 5, p. 3705 | DOI:10.1002/mma.6975
- Local well‐posedness of compressible radiation hydrodynamic equations with density‐dependent viscosities and vacuum, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 6, p. 4715 | DOI:10.1002/mma.7064
- Decay of strong solution for the compressible Navier–Stokes equations with large initial data, Nonlinear Analysis, Volume 213 (2021), p. 112494 | DOI:10.1016/j.na.2021.112494
- Global strong solution for compressible and radiative MHD flow with density-dependent viscosity and degenerate heat-conductivity in unbounded domains, Nonlinear Analysis: Real World Applications, Volume 60 (2021), p. 103312 | DOI:10.1016/j.nonrwa.2021.103312
- The unique global solvability and optimal time decay rates for a multi-dimensional compressible generic two-fluid model with capillarity effects *, Nonlinearity, Volume 34 (2021) no. 1, p. 164 | DOI:10.1088/1361-6544/abaff0
- On local strong and classical solutions to the three-dimensional barotropic compressible Navier-Stokes equations with vacuum, Science China Mathematics, Volume 64 (2021) no. 8, p. 1771 | DOI:10.1007/s11425-019-9755-3
- Global existence of classical solutions for two-dimensional isentropic compressible Navier–Stokes equations with small initial mass, Advances in Difference Equations, Volume 2020 (2020) no. 1 | DOI:10.1186/s13662-020-02675-0
- Entropy bounded solutions to the one-dimensional compressible Navier-Stokes equations with zero heat conduction and far field vacuum, Advances in Mathematics, Volume 361 (2020), p. 106923 | DOI:10.1016/j.aim.2019.106923
- A well-posedness result for viscous compressible fluids with only bounded density, Analysis PDE, Volume 13 (2020) no. 1, p. 275 | DOI:10.2140/apde.2020.13.275
- Convergence to equilibrium for the solution of the full compressible Navier-Stokes equations, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 37 (2020) no. 2, p. 457 | DOI:10.1016/j.anihpc.2019.09.001
- Global Small Solutions of Heat Conductive Compressible Navier–Stokes Equations with Vacuum: Smallness on Scaling Invariant Quantity, Archive for Rational Mechanics and Analysis, Volume 237 (2020) no. 2, p. 899 | DOI:10.1007/s00205-020-01521-7
- Global strong solutions to the 3D full compressible Navier–Stokes equations with density–temperature–dependent viscosities in bounded domains, Journal of Differential Equations, Volume 268 (2020) no. 12, p. 7286 | DOI:10.1016/j.jde.2019.11.065
- On a simplified compressible Navier-Stokes equations with temperature-dependent viscosity, Journal of Differential Equations, Volume 268 (2020) no. 5, p. 1974 | DOI:10.1016/j.jde.2019.09.023
- Nonlinearly exponential stability of compressible Navier-Stokes system with degenerate heat-conductivity, Journal of Differential Equations, Volume 268 (2020) no. 5, p. 2464 | DOI:10.1016/j.jde.2019.09.006
- Optimal decay rates of isentropic compressible Navier-Stokes equations with discontinuous initial data, Journal of Differential Equations, Volume 269 (2020) no. 10, p. 8132 | DOI:10.1016/j.jde.2020.06.021
- Hyperbolic compressible Navier-Stokes equations, Journal of Differential Equations, Volume 269 (2020) no. 4, p. 3196 | DOI:10.1016/j.jde.2020.02.025
- Global strong solutions to the two-dimensional full compressible Navier-Stokes equations with vacuum, Journal of Mathematical Analysis and Applications, Volume 481 (2020) no. 1, p. 123459 | DOI:10.1016/j.jmaa.2019.123459
- Local Existence of Strong Solutions of a Fluid–Structure Interaction Model, Journal of Mathematical Fluid Mechanics, Volume 22 (2020) no. 4 | DOI:10.1007/s00021-020-00520-8
- Weak Serrin‐type criterion for the three‐dimensional viscous compressible Navier–Stokes system, Journal of the London Mathematical Society, Volume 102 (2020) no. 1, p. 125 | DOI:10.1112/jlms.12315
- Global existence of strong solutions to compressible Navier–Stokes system with degenerate heat conductivity in unbounded domains, Mathematical Methods in the Applied Sciences, Volume 43 (2020) no. 4, p. 1543 | DOI:10.1002/mma.5969
- Global well-posedness of non-heat conductive compressible Navier–Stokes equations in 1D, Nonlinearity, Volume 33 (2020) no. 5, p. 2181 | DOI:10.1088/1361-6544/ab6c7b
- Large time behavior for a compressible two-fluid model with algebraic pressure closure and large initial data, Nonlinearity, Volume 33 (2020) no. 8, p. 4075 | DOI:10.1088/1361-6544/ab801c
- Global Large Solutions to the Three Dimensional Compressible Navier–Stokes Equations, SIAM Journal on Mathematical Analysis, Volume 52 (2020) no. 2, p. 1806 | DOI:10.1137/19m1265843
- Global Weak Solutions for the Cauchy Problem to One-Dimensional Heat-Conductive MHD Equations of Viscous Non-resistive Gas, Acta Applicandae Mathematicae, Volume 163 (2019) no. 1, p. 185 | DOI:10.1007/s10440-018-0219-5
- Global Well-Posedness and Large Time Asymptotic Behavior of Classical Solutions to the Compressible Navier–Stokes Equations with Vacuum, Annals of PDE, Volume 5 (2019) no. 1 | DOI:10.1007/s40818-019-0064-5
- Non-existence of Classical Solutions with Finite Energy to the Cauchy Problem of the Compressible Navier–Stokes Equations, Archive for Rational Mechanics and Analysis, Volume 232 (2019) no. 2, p. 557 | DOI:10.1007/s00205-018-1328-z
- On Classical Solutions for Viscous Polytropic Fluids with Degenerate Viscosities and Vacuum, Archive for Rational Mechanics and Analysis, Volume 234 (2019) no. 3, p. 1281 | DOI:10.1007/s00205-019-01412-6
- Global existence of weak solution for the compressible Navier–Stokes–Poisson system with density-dependent viscosity, Boundary Value Problems, Volume 2019 (2019) no. 1 | DOI:10.1186/s13661-019-1268-z
- Global large solutions to the planar magnetohydrodynamics equations with constant heat conductivity, Boundary Value Problems, Volume 2019 (2019) no. 1 | DOI:10.1186/s13661-019-1275-0
- A Low-Frequency Assumption for Optimal Time-Decay Estimates to the Compressible Navier–Stokes Equations, Communications in Mathematical Physics, Volume 371 (2019) no. 2, p. 525 | DOI:10.1007/s00220-019-03415-6
- Stability Analysis of a Difference Scheme for the Dynamic Model of Gas Lift Process, Computational and Information Technologies in Science, Engineering and Education, Volume 998 (2019), p. 236 | DOI:10.1007/978-3-030-12203-4_24
- Global large solutions to planar magnetohydrodynamics equations with temperature-dependent coefficients, Journal of Hyperbolic Differential Equations, Volume 16 (2019) no. 03, p. 443 | DOI:10.1142/s0219891619500164
- Global strong solutions to 1-D vacuum free boundary problem for compressible Navier–Stokes equations with variable viscosity and thermal conductivity, Journal of Mathematical Analysis and Applications, Volume 474 (2019) no. 2, p. 1153 | DOI:10.1016/j.jmaa.2019.02.009
- Global Large Solutions and Incompressible Limit for the Compressible Navier–Stokes Equations, Journal of Mathematical Fluid Mechanics, Volume 21 (2019) no. 2 | DOI:10.1007/s00021-019-0428-3
- Singularity formation of the compressible non-barotropic flows with zero heat conductivity, Journal of Mathematical Physics, Volume 60 (2019) no. 3 | DOI:10.1063/1.5085807
- The large time behavior of the free boundary for one dimensional compressible Navier-Stokes equations, Journal of Mathematical Physics, Volume 60 (2019) no. 7 | DOI:10.1063/1.5082004
- ILL-POSEDNESS FOR THE COMPRESSIBLE NAVIER–STOKES EQUATIONS WITH THE VELOCITY IN FRAMEWORK, Journal of the Institute of Mathematics of Jussieu, Volume 18 (2019) no. 4, p. 829 | DOI:10.1017/s1474748017000238
- Vanishing shear viscosity limit and boundary layer study for the planar MHD system, Mathematical Models and Methods in Applied Sciences, Volume 29 (2019) no. 06, p. 1139 | DOI:10.1142/s0218202519500180
- The local existence and blowup criterion for strong solutions to the kinetic Cucker–Smale model coupled with the compressible Navier–Stokes equations, Nonlinear Analysis: Real World Applications, Volume 49 (2019), p. 217 | DOI:10.1016/j.nonrwa.2019.03.007
- Global strong solutions to magnetohydrodynamics with density-dependent viscosity and degenerate heat-conductivity, Nonlinearity, Volume 32 (2019) no. 11, p. 4395 | DOI:10.1088/1361-6544/ab3059
- Converge rates towards stationary solutions for the outflow problem of planar magnetohydrodynamics on a half line, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 149 (2019) no. 5, p. 1291 | DOI:10.1017/prm.2018.66
- On scaling invariance and type-I singularities for the compressible Navier-Stokes equations, Science China Mathematics, Volume 62 (2019) no. 11, p. 2271 | DOI:10.1007/s11425-018-9363-1
- The Masterpieces of John Forbes Nash Jr., The Abel Prize 2013-2017 (2019), p. 391 | DOI:10.1007/978-3-319-99028-6_19
- From compressible to incompressible inhomogeneous flows in the case of large data, Tunisian Journal of Mathematics, Volume 1 (2019) no. 1, p. 127 | DOI:10.2140/tunis.2019.1.127
- Global Classical and Weak Solutions to the Three-Dimensional Full Compressible Navier–Stokes System with Vacuum and Large Oscillations, Archive for Rational Mechanics and Analysis, Volume 227 (2018) no. 3, p. 995 | DOI:10.1007/s00205-017-1188-y
- Stability of Planar Rarefaction Wave to 3D Full Compressible Navier–Stokes Equations, Archive for Rational Mechanics and Analysis, Volume 230 (2018) no. 3, p. 911 | DOI:10.1007/s00205-018-1260-2
- Dispersive effects of weakly compressible and fast rotating inviscid fluids, Discrete Continuous Dynamical Systems - A, Volume 38 (2018) no. 2, p. 749 | DOI:10.3934/dcds.2018033
- Symmetric Solutions to the Viscous Gas Equations, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 1711 | DOI:10.1007/978-3-319-13344-7_35
- Fourier Analysis Methods for the Compressible Navier-Stokes Equations, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 1843 | DOI:10.1007/978-3-319-13344-7_49
- Local and Global Existence of Strong Solutions for the Compressible Navier-Stokes Equations Near Equilibria via the Maximal Regularity, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 1905 | DOI:10.1007/978-3-319-13344-7_50
- Global Existence of Regular Solutions with Large Oscillations and Vacuum for Compressible Flows, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 2037 | DOI:10.1007/978-3-319-13344-7_58
- Finite Time Blow-Up of Regular Solutions for Compressible Flows, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 2183 | DOI:10.1007/978-3-319-13344-7_57
- Existence of Stationary Weak Solutions for Isentropic and Isothermal Compressible Flows, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 2549 | DOI:10.1007/978-3-319-13344-7_63
- Solutions for Models of Chemically Reacting Compressible Mixtures, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 2979 | DOI:10.1007/978-3-319-13344-7_73
- On center singularity for compressible spherically symmetric nematic liquid crystal flows, Journal of Differential Equations, Volume 264 (2018) no. 8, p. 5197 | DOI:10.1016/j.jde.2017.12.035
- Global well-posedness to the one-dimensional model for planar non-resistive magnetohydrodynamics with large data and vacuum, Journal of Mathematical Analysis and Applications, Volume 462 (2018) no. 2, p. 1342 | DOI:10.1016/j.jmaa.2018.02.047
- Stability of steady-state solutions to Navier–Stokes–Poisson systems, Journal of Mathematical Analysis and Applications, Volume 462 (2018) no. 2, p. 1679 | DOI:10.1016/j.jmaa.2018.03.001
- Stability of stationary solutions for inflow problem on the planar magnetohydrodynamics, Journal of Mathematical Physics, Volume 59 (2018) no. 2 | DOI:10.1063/1.5023583
- Global regular motions for compressible barotropic viscous fluids: Stability, Mathematical Methods in the Applied Sciences, Volume 41 (2018) no. 15, p. 5869 | DOI:10.1002/mma.4860
- Global solution to 3D spherically symmetric compressible Navier–Stokes equations with large data, Nonlinear Analysis: Real World Applications, Volume 40 (2018), p. 260 | DOI:10.1016/j.nonrwa.2017.09.004
- Global classical solutions of compressible isentropic Navier–Stokes equations with small density, Nonlinear Analysis: Real World Applications, Volume 42 (2018), p. 53 | DOI:10.1016/j.nonrwa.2017.12.005
- Stability of composite wave for inflow problem on the planar magnetohydrodynamics, Nonlinear Analysis: Real World Applications, Volume 44 (2018), p. 305 | DOI:10.1016/j.nonrwa.2018.05.008
- Global strong solution for the full MHD equations with vacuum and large data, Nonlinear Analysis: Real World Applications, Volume 44 (2018), p. 385 | DOI:10.1016/j.nonrwa.2018.05.012
- Global classical solution to two-dimensional compressible Navier–Stokes equations with large data inR2, Physica D: Nonlinear Phenomena, Volume 376-377 (2018), p. 180 | DOI:10.1016/j.physd.2017.12.006
- Global Solutions to the Isentropic Compressible Navier–Stokes Equations with a Class of Large Initial Data, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 5, p. 4983 | DOI:10.1137/17m1122062
- The existence results for a new 2‐D compressible fluid model with the horizontal thermal gradient effect, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 98 (2018) no. 8, p. 1302 | DOI:10.1002/zamm.201700176
- Global strong solutions to the one-dimensional heat-conductive model for planar non-resistive magnetohydrodynamics with large data, Zeitschrift für angewandte Mathematik und Physik, Volume 69 (2018) no. 3 | DOI:10.1007/s00033-018-0970-5
- , Volume 1903 (2017), p. 020003 | DOI:10.1063/1.5012614
- Global weak solution to 3D compressible flows with density-dependent viscosity and free boundary, Communications on Pure Applied Analysis, Volume 16 (2017) no. 1, p. 1 | DOI:10.3934/cpaa.2017001
- Global Existence of Classical Solutions and Optimal Decay Rate Via the Theory of Semigroup, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2017), p. 1 | DOI:10.1007/978-3-319-10151-4_52-1
- Existence of Stationary Weak Solutions for the Isentropic and Isothermal Flows, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2017), p. 1 | DOI:10.1007/978-3-319-10151-4_63-1
- Local and Global Existence of Strong Solutions Near General Equilibria, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2017), p. 1 | DOI:10.1007/978-3-319-10151-4_50-1
- Existence and uniqueness of weak solutions of the compressible spherically symmetric Navier–Stokes equations, Journal of Differential Equations, Volume 262 (2017) no. 3, p. 1341 | DOI:10.1016/j.jde.2016.10.013
- Global strong solution to compressible Navier–Stokes equations with density dependent viscosity and temperature dependent heat conductivity, Journal of Differential Equations, Volume 262 (2017) no. 8, p. 4314 | DOI:10.1016/j.jde.2017.01.007
- On Classical Solutions to 2D Shallow Water Equations with Degenerate Viscosities, Journal of Mathematical Fluid Mechanics, Volume 19 (2017) no. 1, p. 151 | DOI:10.1007/s00021-016-0276-3
- Compressible Navier–Stokes Equations with Revised Maxwell’s Law, Journal of Mathematical Fluid Mechanics, Volume 19 (2017) no. 1, p. 77 | DOI:10.1007/s00021-016-0266-5
- The stability of contact discontinuity for compressible planar magnetohydrodynamics, Kinetic Related Models, Volume 10 (2017) no. 4, p. 1235 | DOI:10.3934/krm.2017047
- A blow-up criterion of spherically symmetric strong solutions to 3d compressible navier-stokes equations with free boundary, Acta Mathematica Scientia, Volume 36 (2016) no. 4, p. 1153 | DOI:10.1016/s0252-9602(16)30060-1
- Local well-posedness in critical spaces for the compressible MHD equations, Applicable Analysis, Volume 95 (2016) no. 2, p. 239 | DOI:10.1080/00036811.2014.910651
- On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity, Discrete and Continuous Dynamical Systems, Volume 36 (2016) no. 8, p. 4477 | DOI:10.3934/dcds.2016.36.4477
- Finite Time Blowup of Regular Solutions, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_57-1
- Global Existence of Regular Solutions with Large Oscillations and Vacuum, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_58-1
- Symmetric Solutions to the Viscous Gas Equations, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_35-1
- Fourier Analysis Methods for the Compressible Navier-Stokes Equations, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_49-1
- Solutions for Models of Chemically Reacting Mixtures, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_73-1
- Blow-Up Criteria of Strong Solutions and Conditional Regularity of Weak Solutions, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_54-1
- Existence and blowup behavior of global strong solutions to the two-dimensional barotrpic compressible Navier–Stokes system with vacuum and large initial data, Journal de Mathématiques Pures et Appliquées, Volume 106 (2016) no. 1, p. 123 | DOI:10.1016/j.matpur.2016.02.003
- Compressible Navier–Stokes Equations with hyperbolic heat conduction, Journal of Hyperbolic Differential Equations, Volume 13 (2016) no. 02, p. 233 | DOI:10.1142/s0219891616500077
- Large-time behavior of solutions to the equations of a viscous heat-conducting flow with shear viscosity in unbounded domains, Journal of Mathematical Analysis and Applications, Volume 436 (2016) no. 1, p. 366 | DOI:10.1016/j.jmaa.2015.11.062
- Blowup criteria for strong solutions to the compressible Navier–Stokes equations with variable viscosity, Nonlinear Analysis: Real World Applications, Volume 29 (2016), p. 1 | DOI:10.1016/j.nonrwa.2015.10.007
- Global well-posedness of strong solutions to the two-dimensional barotropic compressible Navier–Stokes equations with vacuum, Zeitschrift für angewandte Mathematik und Physik, Volume 67 (2016) no. 2 | DOI:10.1007/s00033-016-0619-1
- Decay rate for degenerate convection diffusion equations in both one and several space dimensions, Acta Mathematica Scientia, Volume 35 (2015) no. 2, p. 281 | DOI:10.1016/s0252-9602(15)60001-7
- On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum, Discrete and Continuous Dynamical Systems, Volume 36 (2015) no. 2, p. 1085 | DOI:10.3934/dcds.2016.36.1085
- The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions, Discrete and Continuous Dynamical Systems, Volume 36 (2015) no. 5, p. 2673 | DOI:10.3934/dcds.2016.36.2673
- On the well-posedness of the full compressible Navier–Stokes system in critical Besov spaces, Journal of Differential Equations, Volume 258 (2015) no. 10, p. 3435 | DOI:10.1016/j.jde.2015.01.012
- Existence results for viscous polytropic fluids with degenerate viscosity coefficients and vacuum, Journal of Differential Equations, Volume 259 (2015) no. 1, p. 84 | DOI:10.1016/j.jde.2015.01.048
- Global existence of classical solutions for isentropic compressible Navier–Stokes equations with small initial density, Journal of Differential Equations, Volume 259 (2015) no. 11, p. 6830 | DOI:10.1016/j.jde.2015.08.007
- Global existence of weak solution to the free boundary problem for compressible Navier-Stokes, Kinetic and Related Models, Volume 9 (2015) no. 1, p. 75 | DOI:10.3934/krm.2016.9.75
- On formation of singularity of spherically symmetric nonbarotropic flows, Kyoto Journal of Mathematics, Volume 55 (2015) no. 1 | DOI:10.1215/21562261-2801813
- On initial boundary value problems for planar magnetohydrodynamics with large data, Mathematical Methods in the Applied Sciences, Volume 38 (2015) no. 17, p. 4111 | DOI:10.1002/mma.3351
- Global classical solution to the 3D isentropic compressible Navier-Stokes equations with general initial data and a density-dependent viscosity coefficient, Mathematical Methods in the Applied Sciences, Volume 38 (2015) no. 6, p. 1158 | DOI:10.1002/mma.3137
- Blow up of classical solutions to the isentropic compressible Navier–Stokes equations, Nonlinear Analysis: Real World Applications, Volume 25 (2015), p. 112 | DOI:10.1016/j.nonrwa.2015.03.005
- On strong solutions to the Cauchy problem of the two-dimensional compressible magnetohydrodynamic equations with vacuum, Nonlinearity, Volume 28 (2015) no. 2, p. 509 | DOI:10.1088/0951-7715/28/2/509
- On global solutions and asymptotic behavior of planar magnetohydrodynamics with large data, Quarterly of Applied Mathematics, Volume 73 (2015) no. 4, p. 759 | DOI:10.1090/qam/1413
- On the Global Motion of Viscous Compressible Barotropic Flows Subject to Large External Potential Forces and Vacuum, SIAM Journal on Mathematical Analysis, Volume 47 (2015) no. 2, p. 1121 | DOI:10.1137/130941298
- Global large solutions of magnetohydrodynamics with temperature-dependent heat conductivity, Zeitschrift für angewandte Mathematik und Physik, Volume 66 (2015) no. 3, p. 865 | DOI:10.1007/s00033-014-0446-1
- Local well-posedness to the cauchy problem of the 3-D compressible navier-stokes equations with density-dependent viscosity, Acta Mathematica Scientia, Volume 34 (2014) no. 3, p. 851 | DOI:10.1016/s0252-9602(14)60055-2
- Blowup analysis for two-dimensional viscous compressible, heat-conductive Navier–Stokes equations, Applied Mathematics and Computation, Volume 232 (2014), p. 719 | DOI:10.1016/j.amc.2014.01.103
- Weak Solutions of the Navier–Stokes Equations for Compressible Flows in a Half-Space with No-Slip Boundary Conditions, Archive for Rational Mechanics and Analysis, Volume 212 (2014) no. 3, p. 709 | DOI:10.1007/s00205-014-0727-z
- Global Well-Posedness of Compressible Navier–Stokes Equations for Some Classes of Large Initial Data, Archive for Rational Mechanics and Analysis, Volume 213 (2014) no. 1, p. 171 | DOI:10.1007/s00205-014-0735-z
- Dynamical Stability of Non-Constant Equilibria for the Compressible Navier–Stokes Equations in Eulerian Coordinates, Communications in Mathematical Physics, Volume 328 (2014) no. 2, p. 809 | DOI:10.1007/s00220-014-2023-z
- On local classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier–Stokes equations with vacuum, Journal de Mathématiques Pures et Appliquées, Volume 102 (2014) no. 4, p. 640 | DOI:10.1016/j.matpur.2014.02.001
- Global Well-Posedness of 2D Compressible Navier–Stokes Equations with Large Data and Vacuum, Journal of Mathematical Fluid Mechanics, Volume 16 (2014) no. 3, p. 483 | DOI:10.1007/s00021-014-0171-8
- Remark on stability of rarefaction waves to the one‐dimensional compressible Navier–Stokes equations with density‐dependent viscosity coefficient, Mathematical Methods in the Applied Sciences, Volume 37 (2014) no. 1, p. 32 | DOI:10.1002/mma.2781
- Global existence of weak solution to Navier–Stokes equations with large external force and general pressure, Mathematical Methods in the Applied Sciences, Volume 37 (2014) no. 17, p. 2716 | DOI:10.1002/mma.3012
- Global existence of classical solutions to two‐dimensional Navier–Stokes equations with Cauchy data containing vacuum, Mathematical Methods in the Applied Sciences, Volume 37 (2014) no. 9, p. 1333 | DOI:10.1002/mma.2896
- One new blowup criterion for the 2D full compressible Navier–Stokes system, Nonlinear Analysis: Real World Applications, Volume 16 (2014), p. 214 | DOI:10.1016/j.nonrwa.2013.09.020
- Asymptotic behavior of global smooth solutions for full compressible Navier–Stokes–Maxwell equations, Nonlinear Analysis: Real World Applications, Volume 19 (2014), p. 105 | DOI:10.1016/j.nonrwa.2014.03.004
- On steady solutions to vacuumless Newtonian models of compressible flow, Nonlinearity, Volume 27 (2014) no. 11, p. 2663 | DOI:10.1088/0951-7715/27/11/2663
- Existence and uniqueness of global classical solutions to 3D isentropic compressible Navier-Stokes equations with general initial data, Science China Mathematics, Volume 57 (2014) no. 7, p. 1463 | DOI:10.1007/s11425-013-4717-7
- Well-Posedness in Critical Spaces for the Full Compressible Mhd Equations, Acta Mathematica Scientia, Volume 33 (2013) no. 4, p. 1153 | DOI:10.1016/s0252-9602(13)60071-5
- A note on the blow-up criterion for the compressible isentropic Navier–Stokes equations with vacuum, Applied Mathematics Letters, Volume 26 (2013) no. 5, p. 584 | DOI:10.1016/j.aml.2012.12.011
- Serrin-Type Blowup Criterion for Full Compressible Navier–Stokes System, Archive for Rational Mechanics and Analysis, Volume 207 (2013) no. 1, p. 303 | DOI:10.1007/s00205-012-0577-5
- On Blowup of Classical Solutions to the Compressible Navier-Stokes Equations, Communications in Mathematical Physics, Volume 321 (2013) no. 2, p. 529 | DOI:10.1007/s00220-012-1610-0
- Serrin-Type Blowup Criterion for Viscous, Compressible, and Heat Conducting Navier-Stokes and Magnetohydrodynamic Flows, Communications in Mathematical Physics, Volume 324 (2013) no. 1, p. 147 | DOI:10.1007/s00220-013-1791-1
- Global solutions for a one-dimensional problem in conducting fluids, Communications in Nonlinear Science and Numerical Simulation, Volume 18 (2013) no. 8, p. 1989 | DOI:10.1016/j.cnsns.2012.12.008
- Dynamics of vacuum states for one-dimensional full compressible Navier-Stokes equations, Communications on Pure Applied Analysis, Volume 12 (2013) no. 6, p. 2543 | DOI:10.3934/cpaa.2013.12.2543
- On the $\mathcal{R}$-Sectoriality and the Initial Boundary Value Problem for the Viscous Compressible Fluid Flow, Funkcialaj Ekvacioj, Volume 56 (2013) no. 3, p. 441 | DOI:10.1619/fesi.56.441
- Global well-posedness of the Cauchy problem of two-dimensional compressible Navier–Stokes equations in weighted spaces, Journal of Differential Equations, Volume 255 (2013) no. 3, p. 351 | DOI:10.1016/j.jde.2013.04.014
- Global classical solutions for 3D compressible Navier–Stokes equations with vacuum and a density-dependent viscosity coefficient, Journal of Mathematical Analysis and Applications, Volume 401 (2013) no. 2, p. 795 | DOI:10.1016/j.jmaa.2012.12.056
- A Serrin criterion for compressible nematic liquid crystal flows, Mathematical Methods in the Applied Sciences, Volume 36 (2013) no. 11, p. 1363 | DOI:10.1002/mma.2689
- Global solutions of the Navier–Stokes equations for isentropic flow with large external potential force, Zeitschrift für angewandte Mathematik und Physik, Volume 64 (2013) no. 3, p. 767 | DOI:10.1007/s00033-012-0263-3
- Global Classical Solutions to the 3-D Isentropic Compressible Navier-Stokes Equations with General Initial Energy, Acta Mathematica Scientia, Volume 32 (2012) no. 6, p. 2141 | DOI:10.1016/s0252-9602(12)60166-0
- Global well‐posedness of classical solutions with large oscillations and vacuum to the three‐dimensional isentropic compressible Navier‐Stokes equations, Communications on Pure and Applied Mathematics, Volume 65 (2012) no. 4, p. 549 | DOI:10.1002/cpa.21382
- Global classical solution to the three-dimensional isentropic compressible Navier-Stokes equations with general initial data, Science China Mathematics, Volume 55 (2012) no. 12, p. 2457 | DOI:10.1007/s11425-012-4481-0
- Existence of strong solutions in critical spaces for barotropic viscous fluids in larger spaces, Science China Mathematics, Volume 55 (2012) no. 2, p. 309 | DOI:10.1007/s11425-012-4360-8
- Existence of Global Strong Solutions in Critical Spaces for Barotropic Viscous Fluids, Archive for Rational Mechanics and Analysis, Volume 202 (2011) no. 2, p. 427 | DOI:10.1007/s00205-011-0430-2
- Blowup Criterion for Viscous Baratropic Flows with Vacuum States, Communications in Mathematical Physics, Volume 301 (2011) no. 1, p. 23 | DOI:10.1007/s00220-010-1148-y
- , International Conference on Information Science and Technology (2011), p. 1098 | DOI:10.1109/icist.2011.5765162
- A Beale–Kato–Majda blow-up criterion for the 3-D compressible Navier–Stokes equations, Journal de Mathématiques Pures et Appliquées, Volume 95 (2011) no. 1, p. 36 | DOI:10.1016/j.matpur.2010.08.001
- On the Navier–Stokes equations for three-dimensional compressible barotropic flow subject to large external potential forces with discontinuous initial data, Journal de Mathématiques Pures et Appliquées, Volume 95 (2011) no. 5, p. 495 | DOI:10.1016/j.matpur.2010.12.002
- Well-posedness in critical spaces for the system of compressible Navier–Stokes in larger spaces, Journal of Differential Equations, Volume 251 (2011) no. 8, p. 2262 | DOI:10.1016/j.jde.2011.06.013
- Weak–Strong Uniqueness for the Isentropic Compressible Navier–Stokes System, Journal of Mathematical Fluid Mechanics, Volume 13 (2011) no. 1, p. 137 | DOI:10.1007/s00021-009-0006-1
- Global strong solutions for a class of compressible non-Newtonian fluids with vacuum, Mathematical Methods in the Applied Sciences, Volume 34 (2011) no. 4, p. 397 | DOI:10.1002/mma.1364
- Short Wave–Long Wave Interactions for Compressible Navier–Stokes Equations, SIAM Journal on Mathematical Analysis, Volume 43 (2011) no. 2, p. 764 | DOI:10.1137/100806746
- Serrin-Type Criterion for the Three-Dimensional Viscous Compressible Flows, SIAM Journal on Mathematical Analysis, Volume 43 (2011) no. 4, p. 1872 | DOI:10.1137/100814639
- A blow-up criterion of strong solutions to the 2D compressible Navier-Stokes equations, Science China Mathematics, Volume 54 (2011) no. 1, p. 105 | DOI:10.1007/s11425-010-4045-0
- A Global Existence Result for the Compressible Navier–Stokes Equations in the Critical L p Framework, Archive for Rational Mechanics and Analysis, Volume 198 (2010) no. 1, p. 233 | DOI:10.1007/s00205-010-0306-x
- Global well‐posedness for compressible Navier‐Stokes equations with highly oscillating initial velocity, Communications on Pure and Applied Mathematics, Volume 63 (2010) no. 9, p. 1173 | DOI:10.1002/cpa.20325
- Optimal control of the acceleration of a conducting gas, Journal of Applied and Industrial Mathematics, Volume 4 (2010) no. 1, p. 6 | DOI:10.1134/s1990478910010023
- Global strong solutions for a class of heat-conducting non-Newtonian fluids with vacuum, Nonlinear Analysis: Real World Applications, Volume 11 (2010) no. 5, p. 3680 | DOI:10.1016/j.nonrwa.2010.01.014
- On the solvability of the compressible Navier–Stokes system in bounded domains, Nonlinearity, Volume 23 (2010) no. 2, p. 383 | DOI:10.1088/0951-7715/23/2/009
- One-Dimensional Compressible Flow with Temperature Dependent Transport Coefficients, SIAM Journal on Mathematical Analysis, Volume 42 (2010) no. 2, p. 904 | DOI:10.1137/090763135
- Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Analysis: Real World Applications, Volume 10 (2009) no. 1, p. 392 | DOI:10.1016/j.nonrwa.2007.10.001
- Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier–Stokes equations, Journal of Differential Equations, Volume 245 (2008) no. 7, p. 1762 | DOI:10.1016/j.jde.2008.07.007
- Well-Posedness in Critical Spaces for Barotropic Viscous Fluids with Truly Not Constant Density, Communications in Partial Differential Equations, Volume 32 (2007) no. 9, p. 1373 | DOI:10.1080/03605300600910399
- Formation of singularities of solutions of the equations of motion of compressible fluids subjected to external forces in the case of several spatial variables, Journal of Mathematical Sciences, Volume 143 (2007) no. 4, p. 3355 | DOI:10.1007/s10958-007-0214-2
- Existence results for viscous polytropic fluids with vacuum, Journal of Differential Equations, Volume 228 (2006) no. 2, p. 377 | DOI:10.1016/j.jde.2006.05.001
- Existence of a Global Solution to One Model Problem of Atmosphere Dynamics, Siberian Mathematical Journal, Volume 46 (2005) no. 5, p. 805 | DOI:10.1007/s11202-005-0079-x
- Unique solvability of the initial boundary value problems for compressible viscous fluids, Journal de Mathématiques Pures et Appliquées, Volume 83 (2004) no. 2, p. 243 | DOI:10.1016/j.matpur.2003.11.004
- Système d'équations d'un gaz visqueux modélisant l'atmosphère avec la force de Coriolis et la stabilité de l'état d'équilibre, ANNALI DELL UNIVERSITA DI FERRARA, Volume 49 (2003) no. 1, p. 127 | DOI:10.1007/bf02844913
- Global solutions of the Navier–Stokes equations for viscous compressible flows, Nonlinear Analysis: Theory, Methods Applications, Volume 52 (2003) no. 8, p. 1867 | DOI:10.1016/s0362-546x(02)00280-8
- On the global solution and interface behaviour of viscous compressible real flow with free boundaries, Nonlinearity, Volume 16 (2003) no. 2, p. 719 | DOI:10.1088/0951-7715/16/2/321
- Large Solutions to the Initial-Boundary Value Problem for Planar Magnetohydrodynamics, SIAM Journal on Applied Mathematics, Volume 63 (2003) no. 4, p. 1424 | DOI:10.1137/s0036139902409284
- Chapter 4 Nonlinear hyperbolic—parabolic coupled systems, Volume 1 (2002), p. 287 | DOI:10.1016/s1874-5717(04)80006-9
- Viscous and/or Heat Conducting Compressible Fluids, Volume 1 (2002), p. 307 | DOI:10.1016/s1874-5792(02)80010-6
- Preface, Volume 1 (2002), p. v | DOI:10.1016/s1874-5792(02)80001-5
- Global Solutions of Nonlinear Magnetohydrodynamics with Large Initial Data, Journal of Differential Equations, Volume 182 (2002) no. 2, p. 344 | DOI:10.1006/jdeq.2001.4111
- LOCAL THEORY IN CRITICAL SPACES FOR COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE GASES, Communications in Partial Differential Equations, Volume 26 (2001) no. 7-8, p. 1183 | DOI:10.1081/pde-100106132
- References, Nonlinear Wave Equations Perturbed by Viscous Terms (2000), p. 239 | DOI:10.1515/9783110811902.239
- Asymptotic Behavior of the Solution to the System for a Viscous Reactive Gas, Journal of Differential Equations, Volume 155 (1999) no. 1, p. 177 | DOI:10.1006/jdeq.1998.3578
- Existence of global solutions of multidimensional Burgers's equations of a compressible viscous fluid, Sbornik: Mathematics, Volume 190 (1999) no. 8, p. 1131 | DOI:10.1070/sm1999v190n08abeh000420
- Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity. I, Siberian Mathematical Journal, Volume 40 (1999) no. 2, p. 351 | DOI:10.1007/s11202-999-0014-7
- Существование глобальных решений многомерных уравнений Бюргерса сжимаемой вязкой жидкости, Математический сборник, Volume 190 (1999) no. 8, p. 61 | DOI:10.4213/sm420
- On existence of global solutions to the Navier-Stokes equations for compressible and viscous flows on the surface of a sphere, ANNALI DELL UNIVERSITA DI FERRARA, Volume 44 (1998) no. 1, p. 63 | DOI:10.1007/bf02828017
- Existence of a Global Solution for a Viscoelastic System, Journal of Mathematical Analysis and Applications, Volume 218 (1998) no. 1, p. 175 | DOI:10.1006/jmaa.1997.5754
- Global Regularity of Solution for General Degenerate Parabolic Equations in 1-D, Journal of Differential Equations, Volume 140 (1997) no. 2, p. 365 | DOI:10.1006/jdeq.1997.3313
- The solvability of the initial boundary-value problem for equations of motion of a viscous compressible barotropic liquid in the spacesW 2 l+1,l/2+1 (Q T ), Journal of Mathematical Sciences, Volume 77 (1995) no. 3, p. 3250 | DOI:10.1007/bf02364719
- The equation of potential flows of a compressible viscous fluid at small reynolds numbers: Existence, uniqueness, and stabilization of solutions, Siberian Mathematical Journal, Volume 34 (1993) no. 3, p. 457 | DOI:10.1007/bf00971220
- Literature, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Volume 22 (1990), p. 297 | DOI:10.1016/s0168-2024(08)70075-4
- A combustion problem in cylindrical and spherical symmetry, Meccanica, Volume 25 (1990) no. 1, p. 47 | DOI:10.1007/bf02015035
- Existence and uniqueness for viscous steady compressible motions, Archive for Rational Mechanics and Analysis, Volume 97 (1987) no. 2, p. 89 | DOI:10.1007/bf00251910
- Navier-stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case, Communications in Mathematical Physics, Volume 103 (1986) no. 2, p. 259 | DOI:10.1007/bf01206939
- The global existence of weak solutions of the mollified system of equations of motion of viscous compressible fluid, Equadiff 6, Volume 1192 (1986), p. 409 | DOI:10.1007/bfb0076101
- On the one-dimensional motion of the polytropic ideal gas non-fixed on the boundary, Journal of Differential Equations, Volume 65 (1986) no. 1, p. 49 | DOI:10.1016/0022-0396(86)90041-0
- Equations of Motion of Compressible Viscous Fluids, Patterns and Waves - Qualitative Analysis of Nonlinear Differential Equations, Volume 18 (1986), p. 97 | DOI:10.1016/s0168-2024(08)70129-2
- Construction of solutions for compressible, isentropic Navier-Stokes equations in one space dimension with nonsmooth initial data, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 103 (1986) no. 3-4, p. 301 | DOI:10.1017/s0308210500018953
- Global a priori estimates for a viscous reactive gas, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 101 (1985) no. 3-4, p. 321 | DOI:10.1017/s0308210500020862
- Limites des equations d’un fluide compressible lorsque la compressibilite tend vers zero, Fluid Dynamics, Volume 1047 (1984), p. 139 | DOI:10.1007/bfb0072329
- The Initial Boundary Value Problem for the Flow of a Barotropic Viscous Fluid, Global in Time, Applicable Analysis, Volume 15 (1983) no. 1-4, p. 91 | DOI:10.1080/00036818308839441
- On the Cauchy Problem for the Equation of a General Fluid, Bifurcation Theory, Mechanics and Physics (1983), p. 109 | DOI:10.1007/978-94-009-7192-9_6
- An existence theorem for compressible viscous fluids, Annali di Matematica Pura ed Applicata, Volume 130 (1982) no. 1, p. 197 | DOI:10.1007/bf01761495
- On the initial-boundary value problem for viscous heat conducting compressible fluids, Kodai Mathematical Journal, Volume 4 (1981) no. 1 | DOI:10.2996/kmj/1138036314
- Existence and continuous dependence for solutions to the equations of a one-dimensional model in gas-dynamics, Meccanica, Volume 16 (1981) no. 3, p. 128 | DOI:10.1007/bf02128441
- Existence and Uniqueness of a Classical Solution of an Initial-Boundary Value Problem of the Theory of Shallow Waters, SIAM Journal on Mathematical Analysis, Volume 12 (1981) no. 2, p. 229 | DOI:10.1137/0512022
- Solvability of the initial-boundary-value problem for the equations of motion of a viscous compressible fluid, Journal of Soviet Mathematics, Volume 14 (1980) no. 2, p. 1120 | DOI:10.1007/bf01562053
- On the initial value problem for compressible fluid flows with vanishing viscosity, Kodai Mathematical Journal, Volume 3 (1980) no. 1 | DOI:10.2996/kmj/1138036123
- Cauchy problem for the equations of gasdynamics with viscosity, Siberian Mathematical Journal, Volume 20 (1979) no. 2, p. 208 | DOI:10.1007/bf00970025
- Quasi-linear equations of evolution, with applications to partial differential equations, Spectral Theory and Differential Equations, Volume 448 (1975), p. 25 | DOI:10.1007/bfb0067080
Cité par 298 documents. Sources : Crossref