Le problème de Cauchy pour les équations différentielles d'un fluide général
Bulletin de la Société Mathématique de France, Tome 90 (1962), pp. 487-497.
@article{BSMF_1962__90__487_0,
     author = {Nash, J.},
     title = {Le probl\`eme de {Cauchy} pour les \'equations diff\'erentielles d'un fluide g\'en\'eral},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {487--497},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {90},
     year = {1962},
     doi = {10.24033/bsmf.1586},
     mrnumber = {26 #6590},
     zbl = {0113.19405},
     language = {fr},
     url = {https://www.numdam.org/articles/10.24033/bsmf.1586/}
}
TY  - JOUR
AU  - Nash, J.
TI  - Le problème de Cauchy pour les équations différentielles d'un fluide général
JO  - Bulletin de la Société Mathématique de France
PY  - 1962
SP  - 487
EP  - 497
VL  - 90
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.1586/
DO  - 10.24033/bsmf.1586
LA  - fr
ID  - BSMF_1962__90__487_0
ER  - 
%0 Journal Article
%A Nash, J.
%T Le problème de Cauchy pour les équations différentielles d'un fluide général
%J Bulletin de la Société Mathématique de France
%D 1962
%P 487-497
%V 90
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.1586/
%R 10.24033/bsmf.1586
%G fr
%F BSMF_1962__90__487_0
Nash, J. Le problème de Cauchy pour les équations différentielles d'un fluide général. Bulletin de la Société Mathématique de France, Tome 90 (1962), pp. 487-497. doi : 10.24033/bsmf.1586. https://www.numdam.org/articles/10.24033/bsmf.1586/

[1] Friedman (Avner). - Interior estimates for parabolic systems of partial differential equations, J. Math. and Mech., t. 7, 1958, p. 393-418. | MR | Zbl

[2] Landau (L. D.) and Lifšic (E. M.). - Fluid mechanics [Translated from “Mekhanika splošnykh sred, Izdanie vtoroe”. Moscou, 1954]. - London, Pergamon Press, 1959.

[3] Pogorzelski (Withold). - Propriétés des solutions du système parabolique d'équations aux dérivées partielles, Math. Scand., t. 6, 1958, p. 237-262. | Zbl

[4] Serrin (James). - The uniqueness of compressible fluid motions, Arch. for rat. Mech. and Anal.. t. 3, 1959, p. 271-288. | MR | Zbl

  • Zhang, Tian-Tian Strong Solutions to 3D Compressible Navier–Stokes Equations with Two-Directional Short Pulse Initial Data, Bulletin of the Malaysian Mathematical Sciences Society, Volume 48 (2025) no. 3 | DOI:10.1007/s40840-025-01861-1
  • Wang, Zhigang Serrin-type blowup Criterion for the degenerate compressible Navier-Stokes equations, Communications in Analysis and Mechanics, Volume 17 (2025) no. 1, p. 145 | DOI:10.3934/cam.2025007
  • Buckmaster, Tristan; Cao-Labora, Gonzalo; Gómez-Serrano, Javier Smooth imploding solutions for 3D compressible fluids, Forum of Mathematics, Pi, Volume 13 (2025) | DOI:10.1017/fmp.2024.12
  • Guo, Boling; Tang, Houzhi; Zhao, Bin Global well-posedness and stability of classical solutions to the pressureless Navier-Stokes system in 3D, Journal of Differential Equations, Volume 422 (2025), p. 696 | DOI:10.1016/j.jde.2025.01.074
  • Shen, Linxuan; Xu, Hao; Zhang, Jianwen Global well-posedness and large-time behavior for the 3D full compressible Navier-Stokes equations with density-dependent viscosity and vacuum, Journal of Differential Equations, Volume 426 (2025), p. 466 | DOI:10.1016/j.jde.2025.01.072
  • Fan, Xinyu; Ju, Qiangchang; Li, Zilai; Xu, Jianjun Zero-Mach limit of the compressible Navier-Stokes system on 2D exterior domains with non-slip boundary conditions for all time, Journal of Differential Equations, Volume 428 (2025), p. 291 | DOI:10.1016/j.jde.2025.02.030
  • Huang, Xushan; Wang, Yi Global existence and optimal time decay rate to one-dimensional two-phase flow model, Journal of Differential Equations, Volume 433 (2025), p. 113210 | DOI:10.1016/j.jde.2025.02.081
  • Liu, Ruikuan; Wu, Chenlong; Yang, Jiayan On the Cauchy problem of 2D compressible fluid model with the horizontal thermal gradient effect, Journal of Mathematical Analysis and Applications, Volume 541 (2025) no. 2, p. 128722 | DOI:10.1016/j.jmaa.2024.128722
  • Zhang, Tiantian Global Classical Solution to the Strip Problem of 2D Compressible Navier–Stokes System with Vacuum and Large Initial Data, Journal of Mathematical Fluid Mechanics, Volume 27 (2025) no. 1 | DOI:10.1007/s00021-024-00900-4
  • Xu, Hao; Ye, Hong; Zhang, Jianwen Global Well-Posedness and Asymptotic Behavior of Strong Solutions to an Initial-Boundary Value Problem of 3D Full Compressible MHD Equations, Journal of Mathematical Fluid Mechanics, Volume 27 (2025) no. 1 | DOI:10.1007/s00021-024-00915-x
  • Zhang, Mingyu On the existence of globally defined weak solutions to three-dimensional compressible magneto-micropolar fluids with discontinuous initial data and vacuum, Journal of Mathematical Physics, Volume 66 (2025) no. 1 | DOI:10.1063/5.0240277
  • Han, Xiaomin; Wu, Yunshun; Zhang, Rong Global existence and large-time behavior of solutions to one-dimensional compressible Navier–Stokes system with outer pressure in the half-space, Journal of Mathematical Physics, Volume 66 (2025) no. 1 | DOI:10.1063/5.0244202
  • Wang, Zhao Blow‐up of smooth solutions to the relaxed compressible Navier‐Stokes equations, Mathematical Methods in the Applied Sciences, Volume 48 (2025) no. 4, p. 4893 | DOI:10.1002/mma.10582
  • Benabidallah, Rachid; Ebobisse, François; Azouz, Mohamed On Global and Decay Solution of Viscous Compressible MHD Equations, Studies in Applied Mathematics, Volume 154 (2025) no. 1 | DOI:10.1111/sapm.12794
  • Brandolese, Lorenzo; Shou, Ling-Yun; Xu, Jiang; Zhang, Ping Sharp decay characterization for the compressible Navier-Stokes equations, Advances in Mathematics, Volume 456 (2024), p. 109905 | DOI:10.1016/j.aim.2024.109905
  • Shang, Zhaoyang; Yang, Erjia Initial boundary value problem and exponential stability for the planar magnetohydrodynamics equations with temperature-dependent viscosity, Advances in Nonlinear Analysis, Volume 13 (2024) no. 1 | DOI:10.1515/anona-2024-0013
  • Dong, Wenchao Full compressible Navier-Stokes equations with the Robin boundary condition on temperature, Applicable Analysis, Volume 103 (2024) no. 1, p. 296 | DOI:10.1080/00036811.2023.2185612
  • Dong, Wenchao On initial boundary value problems for the compressible Navier–Stokes system with temperature dependent heat conductivity, Archiv der Mathematik, Volume 122 (2024) no. 1, p. 71 | DOI:10.1007/s00013-023-01926-2
  • Chen, Gui-Qiang G.; Huang, Yucong; Zhu, Shengguo Global Spherically Symmetric Solutions of the Multidimensional Full Compressible Navier–Stokes Equations with Large Data, Archive for Rational Mechanics and Analysis, Volume 248 (2024) no. 6 | DOI:10.1007/s00205-024-02018-3
  • Feireisl, Eduard; Lukáčová-Medvid’ová, Mária; She, Bangwei; Yuan, Yuhuan Convergence of Numerical Methods for the Navier–Stokes–Fourier System Driven by Uncertain Initial/Boundary Data, Foundations of Computational Mathematics (2024) | DOI:10.1007/s10208-024-09666-7
  • Tang, Houzhi; Zhang, Shuxing; Zou, Weiyuan Decay of the compressible Navier-Stokes equations with hyperbolic heat conduction, Journal of Differential Equations, Volume 388 (2024), p. 1 | DOI:10.1016/j.jde.2023.12.042
  • Luo, Zhaonan; Luo, Wei; Yin, Zhaoyang Global existence and optimal decay rate to the compressible FENE dumbbell model, Journal of Differential Equations, Volume 404 (2024), p. 130 | DOI:10.1016/j.jde.2024.05.044
  • Bai, Xiang; Tan, Changhui; Xue, Liutang Global well-posedness and asymptotic behavior for the Euler-alignment system with pressure, Journal of Differential Equations, Volume 407 (2024), p. 269 | DOI:10.1016/j.jde.2024.06.020
  • Yu, Haibo Global strong solutions with large oscillations to the 3D full compressible Navier–Stokes equations without heat conductivity, Journal of Evolution Equations, Volume 24 (2024) no. 3 | DOI:10.1007/s00028-024-01002-4
  • Yang, NanNan Global Solutions of 3D Isentropic Compressible Navier–Stokes Equations with Two Slow Variables, Journal of Mathematical Fluid Mechanics, Volume 26 (2024) no. 2 | DOI:10.1007/s00021-024-00855-6
  • Duan, Qin; Huang, Xiangdi Local Weak Solution of the Isentropic Compressible Navier–Stokes Equations with Variable Viscosity, Journal of Mathematical Fluid Mechanics, Volume 26 (2024) no. 3 | DOI:10.1007/s00021-024-00871-6
  • Wang, Yongfu Blowup Criterion for Viscous Non-baratropic Flows with Zero Heat Conduction Involving Velocity Divergence, Journal of Mathematical Fluid Mechanics, Volume 26 (2024) no. 3 | DOI:10.1007/s00021-024-00887-y
  • Hong, Guangyi; Hou, Xiaofeng; Peng, Hongyun; Zhu, Changjiang Global existence for a class of large solution to compressible Navier–Stokes equations with vacuum, Mathematische Annalen, Volume 388 (2024) no. 2, p. 2163 | DOI:10.1007/s00208-023-02573-2
  • Feireisl, Eduard; Wen, Huanyao; Zhu, Changjiang On Nash’s conjecture for models of viscous, compressible, and heat conducting fluids, Mathematische Annalen, Volume 390 (2024) no. 1, p. 1201 | DOI:10.1007/s00208-023-02778-5
  • Hou, Meichen; Liu, Lingjun; Wang, Shu; Xu, Lingda Vanishing viscosity limit to the planar rarefaction wave with vacuum for 3-D full compressible Navier–Stokes equations with temperature-dependent transport coefficients, Mathematische Annalen, Volume 390 (2024) no. 3, p. 3513 | DOI:10.1007/s00208-024-02840-w
  • Bai, Xiang; Miao, Qianyun; Tan, Changhui; Xue, Liutang Global well-posedness and asymptotic behavior in critical spaces for the compressible Euler system with velocity alignment, Nonlinearity, Volume 37 (2024) no. 2, p. 025007 | DOI:10.1088/1361-6544/ad140b
  • Li, Jinkai; Xin, Zhouping Instantaneous Unboundedness of the Entropy and Uniform Positivity of the Temperature for the Compressible Navier–Stokes Equations with Fast Decay Density, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 3, p. 3004 | DOI:10.1137/23m1594352
  • Danchin, Raphaël; Wang, Shan Exponential decay for inhomogeneous viscous flows on the torus, Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 2 | DOI:10.1007/s00033-024-02198-8
  • Wang, Haitao; Zhang, Xiongtao The Regularity and Uniqueness of a Global Solution to the Isentropic Navier-Stokes Equation with Rough Initial Data, Acta Mathematica Scientia, Volume 43 (2023) no. 4, p. 1675 | DOI:10.1007/s10473-023-0415-x
  • Duan, Qin; Xin, Zhouping; Zhu, Shengguo On Regular Solutions for Three-Dimensional Full Compressible Navier–Stokes Equations with Degenerate Viscosities and Far Field Vacuum, Archive for Rational Mechanics and Analysis, Volume 247 (2023) no. 1 | DOI:10.1007/s00205-022-01840-x
  • Gao, Jincheng; Li, Minling; Yao, Zheng-an Optimal decay of compressible Navier-Stokes equations with or without potential force, Journal of Differential Equations, Volume 342 (2023), p. 63 | DOI:10.1016/j.jde.2022.09.030
  • Li, Yachun; Shang, Zhaoyang Global well-posedness and exponential decay rates of the strong solutions to the two-dimensional full compressible magnetohydrodynamics equations with vacuum in some class of large initial data, Journal of Differential Equations, Volume 359 (2023), p. 211 | DOI:10.1016/j.jde.2023.02.032
  • Lu, Yong; Zhang, Ping Global solutions of 2D isentropic compressible Navier-Stokes equations with one slow variable, Journal of Differential Equations, Volume 376 (2023), p. 406 | DOI:10.1016/j.jde.2023.08.041
  • Wang, Shu; Zhang, Shuzhen The initial value problem for the equations of motion of fractional compressible viscous fluids, Journal of Differential Equations, Volume 377 (2023), p. 369 | DOI:10.1016/j.jde.2023.09.012
  • Donatelli, Donatella; Pescatore, Lorenzo Blow-up criteria for a fluid dynamical model arising in astrophysics, Journal of Hyperbolic Differential Equations, Volume 20 (2023) no. 03, p. 629 | DOI:10.1142/s0219891623500194
  • Zhang, Mingyu Global strong solutions of 3D compressible isothermal magnetohydrodynamics, Journal of Inequalities and Applications, Volume 2023 (2023) no. 1 | DOI:10.1186/s13660-023-02958-6
  • Liu, Hui; Si, Xin; Yu, Haibo Global existence and decay of strong solutions to the compressible Navier-Stokes-Poisson equations in bounded domains, Journal of Mathematical Analysis and Applications, Volume 525 (2023) no. 1, p. 127223 | DOI:10.1016/j.jmaa.2023.127223
  • Fan, Jie; Jiu, Quansen Blow up Criteria for the 2D Compressible Navier-Stokes Equations in Bounded Domains with Vacuum, Journal of Mathematical Fluid Mechanics, Volume 25 (2023) no. 1 | DOI:10.1007/s00021-022-00744-w
  • Li, Jinkai; Zheng, Yasi Local Existence and Uniqueness of Heat Conductive Compressible Navier–Stokes Equations in the Presence of Vacuum Without Initial Compatibility Conditions, Journal of Mathematical Fluid Mechanics, Volume 25 (2023) no. 1 | DOI:10.1007/s00021-022-00761-9
  • Cao, Yuebo Global classical solutions to the compressible Navier–Stokes equations with Navier-type slip boundary condition in 2D bounded domains, Journal of Mathematical Physics, Volume 64 (2023) no. 11 | DOI:10.1063/5.0142015
  • Wang, Yanqing; Wang, Yongfu; Ye, Yulin On the regularity criteria for the three‐dimensional compressible Navier–Stokes system in Lorentz spaces, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 4, p. 4763 | DOI:10.1002/mma.8802
  • Mahmood, Tariq; Shang, Zhaoyang; Sun, Mei On the vanishing elastic limit of compressible liquid crystal material flow, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 9, p. 10480 | DOI:10.1002/mma.9134
  • Danchin, Raphaël; Tolksdorf, Patrick Critical regularity issues for the compressible Navier–Stokes system in bounded domains, Mathematische Annalen, Volume 387 (2023) no. 3-4, p. 1903 | DOI:10.1007/s00208-022-02501-w
  • Peng, Hongyun; Zhai, Xiaoping The Cauchy Problem for the \(\boldsymbol{N}\)-Dimensional Compressible Navier–Stokes Equations without Heat Conductivity, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 2, p. 1439 | DOI:10.1137/22m1504998
  • Wang, Haitao; Zhang, Xiongtao Propagation of Rough Initial Data for Navier–Stokes Equation, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 2, p. 966 | DOI:10.1137/22m1474540
  • Liu, Xin; Yuan, Yuan Immediate Blowup of Entropy-Bounded Classical Solutions to the Vacuum Free Boundary Problem of Nonisentropic Compressible Navier–Stokes Equations, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 3, p. 1524 | DOI:10.1137/22m1493732
  • Hu, Yuxi; Racke, Reinhard Global Existence Versus Blow-Up for Multidimensional Hyperbolized Compressible Navier–Stokes Equations, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 5, p. 4788 | DOI:10.1137/22m1497468
  • Li, Jinkai; Xin, Zhouping Local and global well-posedness of entropy-bounded solutions to the compressible Navier-Stokes equations in multi-dimensions, Science China Mathematics, Volume 66 (2023) no. 10, p. 2219 | DOI:10.1007/s11425-022-2047-0
  • Karafyllis, Iasson; Papageorgiou, Markos A particle method for 1‐D compressible fluid flow, Studies in Applied Mathematics, Volume 151 (2023) no. 4, p. 1282 | DOI:10.1111/sapm.12623
  • Dong, Wenchao On Some Types of Initial-Boundary Value Problems for the Compressible Navier–Stokes Equations with Temperature-Dependent and Degenerate Heat Conductivity, The Journal of Geometric Analysis, Volume 33 (2023) no. 11 | DOI:10.1007/s12220-023-01403-w
  • Wang, Mei; Li, Zilai; Guo, Zhenhua Global Solutions to a 3D Axisymmetric Compressible Navier-Stokes System with Density-Dependent Viscosity, Acta Mathematica Scientia, Volume 42 (2022) no. 2, p. 521 | DOI:10.1007/s10473-022-0207-8
  • Huang, Bingyuan; Ding, Shijin; Wu, Riqing Classical Solutions of the 3D Compressible Fluid-Particle System with a Magnetic Field, Acta Mathematica Scientia, Volume 42 (2022) no. 4, p. 1585 | DOI:10.1007/s10473-022-0417-0
  • Li, Jinlu; Yin, Zhaoyang; Zhai, Xiaoping Global Well-Posedness for the Full Compressible Navier-Stokes Equations, Acta Mathematica Scientia, Volume 42 (2022) no. 5, p. 2131 | DOI:10.1007/s10473-022-0523-z
  • Li, Hao; Zhu, Shengguo On regular solutions to compressible radiation hydrodynamic equations with far field vacuum, Advances in Nonlinear Analysis, Volume 12 (2022) no. 1, p. 54 | DOI:10.1515/anona-2022-0264
  • Fan, Xinyu; Li, Jiaxu; Li, Jing Global Existence of Strong and Weak Solutions to 2D Compressible Navier–Stokes System in Bounded Domains with Large Data and Vacuum, Archive for Rational Mechanics and Analysis, Volume 245 (2022) no. 1, p. 239 | DOI:10.1007/s00205-022-01790-4
  • Wang, Haitao; Yu, Shih-Hsien; Zhang, Xiongtao Global Well-Posedness of Compressible Navier–Stokes Equation with $BV\cap L^1$ Initial Data, Archive for Rational Mechanics and Analysis, Volume 245 (2022) no. 1, p. 375 | DOI:10.1007/s00205-022-01787-z
  • Zhang, Mingyu On global strong solutions to the 3D MHD flows with density-temperature-dependent viscosities, Boundary Value Problems, Volume 2022 (2022) no. 1 | DOI:10.1186/s13661-022-01626-w
  • Xu, Xinying; Zhang, Jianwen; Zhong, Minghui On the cauchy problem of 3D compressible, viscous, heat-conductive navier-stokes-Poisson equations subject to large and non-flat doping profile, Calculus of Variations and Partial Differential Equations, Volume 61 (2022) no. 5 | DOI:10.1007/s00526-022-02280-x
  • Li, Jinkai; Xin, Zhouping Entropy‐Bounded Solutions to the One‐Dimensional Heat Conductive Compressible Navier‐Stokes Equations with Far Field Vacuum, Communications on Pure and Applied Mathematics, Volume 75 (2022) no. 11, p. 2393 | DOI:10.1002/cpa.22015
  • Liu, Tai‐Ping; Yu, Shih‐Hsien Navier‐Stokes Equations in Gas Dynamics: Green's Function, Singularity, and Well‐Posedness, Communications on Pure and Applied Mathematics, Volume 75 (2022) no. 2, p. 223 | DOI:10.1002/cpa.22030
  • Shang, Zhaoyang Global Large Solutions to the Cauchy Problem of Planar Magnetohydrodynamics Equations with Temperature-Dependent Coefficients, Journal of Dynamical and Control Systems, Volume 28 (2022) no. 1, p. 163 | DOI:10.1007/s10883-020-09526-x
  • Yang, Menghui; Su, Yunfei Existence of global strong solutions for a reduced gravity two-and-a-half layer model, Journal of Mathematical Analysis and Applications, Volume 509 (2022) no. 2, p. 125989 | DOI:10.1016/j.jmaa.2022.125989
  • Pokorný, Milan Steady Compressible Navier–Stokes–Fourier Equations with Dirichlet Boundary Condition for the Temperature, Journal of Mathematical Fluid Mechanics, Volume 24 (2022) no. 1 | DOI:10.1007/s00021-021-00655-2
  • Li, Hao; Shang, Zhaoyang Global Strong Solution to the Two-Dimensional Full Compressible Navier–Stokes Equations with Large Viscosity, Journal of Mathematical Fluid Mechanics, Volume 24 (2022) no. 1 | DOI:10.1007/s00021-021-00641-8
  • Li, Yang; She, Bangwei A Numerical Approach for the Existence of Dissipative Weak Solutions to a Compressible Two-fluid Model, Journal of Mathematical Fluid Mechanics, Volume 24 (2022) no. 3 | DOI:10.1007/s00021-022-00706-2
  • Wang, Teng; Wang, Xiang; Zhang, Rong Global strong solutions to planar radiative magnetohydrodynamic equations with density-dependent viscosity and degenerate heat-conductivity, Journal of Mathematical Physics, Volume 63 (2022) no. 3 | DOI:10.1063/5.0084254
  • IWABUCHI, Tsukasa; OGAWA, Takayoshi Ill-posedness for the compressible Navier–Stokes equations under barotropic condition in limiting Besov spaces, Journal of the Mathematical Society of Japan, Volume 74 (2022) no. 2 | DOI:10.2969/jmsj/81598159
  • Suen, Anthony Some Serrin type blow‐up criteria for the three‐dimensional viscous compressible flows with large external potential force, Mathematical Methods in the Applied Sciences, Volume 45 (2022) no. 4, p. 2072 | DOI:10.1002/mma.7908
  • Lai, Suhua; Xu, Hao; Zhang, Jianwen Well-posedness and exponential decay for the Navier–Stokes equations of viscous compressible heat-conductive fluids with vacuum, Mathematical Models and Methods in Applied Sciences, Volume 32 (2022) no. 09, p. 1725 | DOI:10.1142/s0218202522500403
  • Kalousek, Martin; Mácha, Václav; Nečasová, Šárka Local-in-time existence of strong solutions to a class of the compressible non-Newtonian Navier–Stokes equations, Mathematische Annalen, Volume 384 (2022) no. 3-4, p. 1057 | DOI:10.1007/s00208-021-02301-8
  • Van Gorder, Robert A. Finite time blowup of incompressible flows surrounding compressible bubbles evolving under soft equations of state, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 478 (2022) no. 2262 | DOI:10.1098/rspa.2022.0172
  • Karafyllis, Iasson; Krstic, Miroslav Global Stabilization of Compressible Flow between Two Moving Pistons, SIAM Journal on Control and Optimization, Volume 60 (2022) no. 2, p. 1117 | DOI:10.1137/21m1413869
  • Huang, Xiangdi; Li, Jing Global Well-Posedness of Classical Solutions to the Cauchy Problem of Two-Dimensional Barotropic Compressible Navier–Stokes System with Vacuum and Large Initial Data, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 3, p. 3192 | DOI:10.1137/21m1440943
  • Cao, Yue; Li, Hao; Zhu, Shengguo Global Regular Solutions for one-dimensional Degenerate Compressible Navier–Stokes Equations with Large Data and Far Field Vacuum, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 4, p. 4658 | DOI:10.1137/21m1464609
  • Cao, Yue; Li, Yachun Local Strong Solutions to the Full Compressible Navier–Stokes System with Temperature-Dependent Viscosity and Heat Conductivity, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 5, p. 5588 | DOI:10.1137/21m1419544
  • Duan, Qin; Huang, Xiangdi Local weak solution of the isentropic compressible Navier-Stokes equations in a half-space, Science China Mathematics, Volume 65 (2022) no. 5, p. 993 | DOI:10.1007/s11425-020-1733-4
  • Suen, Anthony Refined blow-up criteria for the three-dimensional viscous compressible flows with large external potential force and general pressure, Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 1 | DOI:10.1007/s00033-021-01652-1
  • Cui, Haibo; Yin, Haiyan The stability of contact discontinuity for the planar thermally radiative magnetohydrodynamics with free boundary, Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 3 | DOI:10.1007/s00033-022-01732-w
  • Mahmood, Tariq; Sun, Mei Global solution to the compressible non-isothermal nematic liquid crystal equations with constant heat conductivity and vacuum, Advances in Difference Equations, Volume 2021 (2021) no. 1 | DOI:10.1186/s13662-021-03672-7
  • Xin, Zhouping; Zhu, Shengguo Global well-posedness of regular solutions to the three-dimensional isentropic compressible Navier-Stokes equations with degenerate viscosities and vacuum, Advances in Mathematics, Volume 393 (2021), p. 108072 | DOI:10.1016/j.aim.2021.108072
  • He, Ling-Bing; Xu, Li On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow, Discrete Continuous Dynamical Systems, Volume 41 (2021) no. 7, p. 3489 | DOI:10.3934/dcds.2021005
  • Liang, Zhilei; Shuai, Jiangyu Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions, Discrete Continuous Dynamical Systems - B, Volume 26 (2021) no. 10, p. 5383 | DOI:10.3934/dcdsb.2020348
  • Xin, Zhouping; Zhu, Shengguo Well-posedness of the three-dimensional isentropic compressible Navier-Stokes equations with degenerate viscosities and far field vacuum, Journal de Mathématiques Pures et Appliquées, Volume 152 (2021), p. 94 | DOI:10.1016/j.matpur.2021.05.004
  • Xu, Hao; Zhang, Jianwen Regularity and uniqueness for the compressible full Navier-Stokes equations, Journal of Differential Equations, Volume 272 (2021), p. 46 | DOI:10.1016/j.jde.2020.09.036
  • Xin, Zhouping; Xu, Jiang Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions, Journal of Differential Equations, Volume 274 (2021), p. 543 | DOI:10.1016/j.jde.2020.10.021
  • Tong, Leilei; Pan, Ronghua; Tan, Zhong Decay estimates of solutions to the compressible micropolar fluids system in R3, Journal of Differential Equations, Volume 293 (2021), p. 520 | DOI:10.1016/j.jde.2021.05.038
  • Suen, Anthony Existence, stability and long time behaviour of weak solutions of the three-dimensional compressible Navier-Stokes equations with potential force, Journal of Differential Equations, Volume 299 (2021), p. 463 | DOI:10.1016/j.jde.2021.07.027
  • Iwabuchi, Tsukasa; Ogawa, Takayoshi Ill-posedness for the Cauchy problem of the two-dimensional compressible Navier-Stokes equations for an ideal gas, Journal of Elliptic and Parabolic Equations, Volume 7 (2021) no. 2, p. 571 | DOI:10.1007/s41808-021-00136-7
  • Li, Wei; Shang, Zhaoyang; Tang, Fuquan Global existence of large solutions to the planar magnetohydrodynamic equations with zero magnetic diffusivity, Journal of Mathematical Analysis and Applications, Volume 496 (2021) no. 1, p. 124801 | DOI:10.1016/j.jmaa.2020.124801
  • Wang, Yongfu On Formation of Singularity for Full Compressible Navier–Stokes System with Zero Heat Conduction, Journal of Mathematical Fluid Mechanics, Volume 23 (2021) no. 2 | DOI:10.1007/s00021-021-00580-4
  • Zhu, Shengguo On the Breakdown of Regular Solutions with Finite Energy for 3D Degenerate Compressible Navier–Stokes Equations, Journal of Mathematical Fluid Mechanics, Volume 23 (2021) no. 3 | DOI:10.1007/s00021-021-00573-3
  • Cao, Yuebo; Peng, Yi; Sun, Ying Global existence of strong solutions to MHD with density-depending viscosity and temperature-depending heat-conductivity in unbounded domains, Journal of Mathematical Physics, Volume 62 (2021) no. 1 | DOI:10.1063/5.0039238
  • Huang, Xiangdi; Yan, Wei Local weak solution of the isentropic compressible Navier–Stokes equations, Journal of Mathematical Physics, Volume 62 (2021) no. 11 | DOI:10.1063/5.0054450
  • Wu, Yunshun; Xiao, Li; Yu, Rongfeng Global strong solutions for viscous radiative gas with degenerate temperature dependent heat conductivity in one-dimensional unbounded domains, Journal of Mathematical Physics, Volume 62 (2021) no. 2 | DOI:10.1063/5.0039346
  • Song, Changzhen; Zhang, Jianwen On the compressible viscous barotropic flows subject to large external potential forces in a half space with Navier's boundary conditions, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 5, p. 3705 | DOI:10.1002/mma.6975
  • Li, Hao; Li, Yachun Local well‐posedness of compressible radiation hydrodynamic equations with density‐dependent viscosities and vacuum, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 6, p. 4715 | DOI:10.1002/mma.7064
  • Gao, Jincheng; Wei, Zhengzhen; Yao, Zheng-an Decay of strong solution for the compressible Navier–Stokes equations with large initial data, Nonlinear Analysis, Volume 213 (2021), p. 112494 | DOI:10.1016/j.na.2021.112494
  • Xiao, Li; Lu, Linzhang Global strong solution for compressible and radiative MHD flow with density-dependent viscosity and degenerate heat-conductivity in unbounded domains, Nonlinear Analysis: Real World Applications, Volume 60 (2021), p. 103312 | DOI:10.1016/j.nonrwa.2021.103312
  • Xu, Fuyi; Chi, Meiling The unique global solvability and optimal time decay rates for a multi-dimensional compressible generic two-fluid model with capillarity effects *, Nonlinearity, Volume 34 (2021) no. 1, p. 164 | DOI:10.1088/1361-6544/abaff0
  • Huang, Xiangdi On local strong and classical solutions to the three-dimensional barotropic compressible Navier-Stokes equations with vacuum, Science China Mathematics, Volume 64 (2021) no. 8, p. 1771 | DOI:10.1007/s11425-019-9755-3
  • Li, Wei; Shang, Zhaoyang; Tang, Fuquan Global existence of classical solutions for two-dimensional isentropic compressible Navier–Stokes equations with small initial mass, Advances in Difference Equations, Volume 2020 (2020) no. 1 | DOI:10.1186/s13662-020-02675-0
  • Li, Jinkai; Xin, Zhouping Entropy bounded solutions to the one-dimensional compressible Navier-Stokes equations with zero heat conduction and far field vacuum, Advances in Mathematics, Volume 361 (2020), p. 106923 | DOI:10.1016/j.aim.2019.106923
  • Danchin, Raphaël; Fanelli, Francesco; Paicu, Marius A well-posedness result for viscous compressible fluids with only bounded density, Analysis PDE, Volume 13 (2020) no. 1, p. 275 | DOI:10.2140/apde.2020.13.275
  • Zhang, Zhifei; Zi, Ruizhao Convergence to equilibrium for the solution of the full compressible Navier-Stokes equations, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 37 (2020) no. 2, p. 457 | DOI:10.1016/j.anihpc.2019.09.001
  • Li, Jinkai Global Small Solutions of Heat Conductive Compressible Navier–Stokes Equations with Vacuum: Smallness on Scaling Invariant Quantity, Archive for Rational Mechanics and Analysis, Volume 237 (2020) no. 2, p. 899 | DOI:10.1007/s00205-020-01521-7
  • Yu, Haibo; Zhang, Peixin Global strong solutions to the 3D full compressible Navier–Stokes equations with density–temperature–dependent viscosities in bounded domains, Journal of Differential Equations, Volume 268 (2020) no. 12, p. 7286 | DOI:10.1016/j.jde.2019.11.065
  • Wen, Huanyao; Zhao, Xinhua On a simplified compressible Navier-Stokes equations with temperature-dependent viscosity, Journal of Differential Equations, Volume 268 (2020) no. 5, p. 1974 | DOI:10.1016/j.jde.2019.09.023
  • Huang, Bin; Shi, Xiaoding Nonlinearly exponential stability of compressible Navier-Stokes system with degenerate heat-conductivity, Journal of Differential Equations, Volume 268 (2020) no. 5, p. 2464 | DOI:10.1016/j.jde.2019.09.006
  • Hu, Xianpeng; Wu, Guochun Optimal decay rates of isentropic compressible Navier-Stokes equations with discontinuous initial data, Journal of Differential Equations, Volume 269 (2020) no. 10, p. 8132 | DOI:10.1016/j.jde.2020.06.021
  • Hu, Yuxi; Racke, Reinhard Hyperbolic compressible Navier-Stokes equations, Journal of Differential Equations, Volume 269 (2020) no. 4, p. 3196 | DOI:10.1016/j.jde.2020.02.025
  • Shang, Zhaoyang Global strong solutions to the two-dimensional full compressible Navier-Stokes equations with vacuum, Journal of Mathematical Analysis and Applications, Volume 481 (2020) no. 1, p. 123459 | DOI:10.1016/j.jmaa.2019.123459
  • Mitra, Sourav Local Existence of Strong Solutions of a Fluid–Structure Interaction Model, Journal of Mathematical Fluid Mechanics, Volume 22 (2020) no. 4 | DOI:10.1007/s00021-020-00520-8
  • Wang, Yongfu Weak Serrin‐type criterion for the three‐dimensional viscous compressible Navier–Stokes system, Journal of the London Mathematical Society, Volume 102 (2020) no. 1, p. 125 | DOI:10.1112/jlms.12315
  • Li, Kexin; Shu, Xuanlin; Xu, Xiaojing Global existence of strong solutions to compressible Navier–Stokes system with degenerate heat conductivity in unbounded domains, Mathematical Methods in the Applied Sciences, Volume 43 (2020) no. 4, p. 1543 | DOI:10.1002/mma.5969
  • Li, Jinkai Global well-posedness of non-heat conductive compressible Navier–Stokes equations in 1D, Nonlinearity, Volume 33 (2020) no. 5, p. 2181 | DOI:10.1088/1361-6544/ab6c7b
  • Li, Yang; Sun, Yongzhong; Zatorska, Ewelina Large time behavior for a compressible two-fluid model with algebraic pressure closure and large initial data, Nonlinearity, Volume 33 (2020) no. 8, p. 4075 | DOI:10.1088/1361-6544/ab801c
  • Zhai, Xiaoping; Li, Yongsheng; Zhou, Fujun Global Large Solutions to the Three Dimensional Compressible Navier–Stokes Equations, SIAM Journal on Mathematical Analysis, Volume 52 (2020) no. 2, p. 1806 | DOI:10.1137/19m1265843
  • Li, Yang; Jiang, Lingyu Global Weak Solutions for the Cauchy Problem to One-Dimensional Heat-Conductive MHD Equations of Viscous Non-resistive Gas, Acta Applicandae Mathematicae, Volume 163 (2019) no. 1, p. 185 | DOI:10.1007/s10440-018-0219-5
  • Li, Jing; Xin, Zhouping Global Well-Posedness and Large Time Asymptotic Behavior of Classical Solutions to the Compressible Navier–Stokes Equations with Vacuum, Annals of PDE, Volume 5 (2019) no. 1 | DOI:10.1007/s40818-019-0064-5
  • Li, Hai-Liang; Wang, Yuexun; Xin, Zhouping Non-existence of Classical Solutions with Finite Energy to the Cauchy Problem of the Compressible Navier–Stokes Equations, Archive for Rational Mechanics and Analysis, Volume 232 (2019) no. 2, p. 557 | DOI:10.1007/s00205-018-1328-z
  • Li, Yachun; Pan, Ronghua; Zhu, Shengguo On Classical Solutions for Viscous Polytropic Fluids with Degenerate Viscosities and Vacuum, Archive for Rational Mechanics and Analysis, Volume 234 (2019) no. 3, p. 1281 | DOI:10.1007/s00205-019-01412-6
  • Cui, Meiying; Song, Wenjing Global existence of weak solution for the compressible Navier–Stokes–Poisson system with density-dependent viscosity, Boundary Value Problems, Volume 2019 (2019) no. 1 | DOI:10.1186/s13661-019-1268-z
  • Li, Wei; Shang, Zhaoyang Global large solutions to the planar magnetohydrodynamics equations with constant heat conductivity, Boundary Value Problems, Volume 2019 (2019) no. 1 | DOI:10.1186/s13661-019-1275-0
  • Xu, Jiang A Low-Frequency Assumption for Optimal Time-Decay Estimates to the Compressible Navier–Stokes Equations, Communications in Mathematical Physics, Volume 371 (2019) no. 2, p. 525 | DOI:10.1007/s00220-019-03415-6
  • Zhumagulov, B.; Temirbekov, N.; Baigereyev, D.; Turarov, A. Stability Analysis of a Difference Scheme for the Dynamic Model of Gas Lift Process, Computational and Information Technologies in Science, Engineering and Education, Volume 998 (2019), p. 236 | DOI:10.1007/978-3-030-12203-4_24
  • Li, Yachun; Shang, Zhaoyang Global large solutions to planar magnetohydrodynamics equations with temperature-dependent coefficients, Journal of Hyperbolic Differential Equations, Volume 16 (2019) no. 03, p. 443 | DOI:10.1142/s0219891619500164
  • Li, Zilai; Ma, Yan; Ou, Yaobin Global strong solutions to 1-D vacuum free boundary problem for compressible Navier–Stokes equations with variable viscosity and thermal conductivity, Journal of Mathematical Analysis and Applications, Volume 474 (2019) no. 2, p. 1153 | DOI:10.1016/j.jmaa.2019.02.009
  • Chen, Zhi-Min; Zhai, Xiaoping Global Large Solutions and Incompressible Limit for the Compressible Navier–Stokes Equations, Journal of Mathematical Fluid Mechanics, Volume 21 (2019) no. 2 | DOI:10.1007/s00021-019-0428-3
  • Yu, Rongfeng Singularity formation of the compressible non-barotropic flows with zero heat conductivity, Journal of Mathematical Physics, Volume 60 (2019) no. 3 | DOI:10.1063/1.5085807
  • Ye, Yulin; Li, Zilai The large time behavior of the free boundary for one dimensional compressible Navier-Stokes equations, Journal of Mathematical Physics, Volume 60 (2019) no. 7 | DOI:10.1063/1.5082004
  • Chen, Jiecheng; Wan, Renhui ILL-POSEDNESS FOR THE COMPRESSIBLE NAVIER–STOKES EQUATIONS WITH THE VELOCITY IN FRAMEWORK, Journal of the Institute of Mathematics of Jussieu, Volume 18 (2019) no. 4, p. 829 | DOI:10.1017/s1474748017000238
  • Qin, Xulong; Yang, Tong; Yao, Zheng-an; Zhou, Wenshu Vanishing shear viscosity limit and boundary layer study for the planar MHD system, Mathematical Models and Methods in Applied Sciences, Volume 29 (2019) no. 06, p. 1139 | DOI:10.1142/s0218202519500180
  • Jin, Chunyin The local existence and blowup criterion for strong solutions to the kinetic Cucker–Smale model coupled with the compressible Navier–Stokes equations, Nonlinear Analysis: Real World Applications, Volume 49 (2019), p. 217 | DOI:10.1016/j.nonrwa.2019.03.007
  • Huang, Bin; Shi, Xiaoding; Sun, Ying Global strong solutions to magnetohydrodynamics with density-dependent viscosity and degenerate heat-conductivity, Nonlinearity, Volume 32 (2019) no. 11, p. 4395 | DOI:10.1088/1361-6544/ab3059
  • Yin, Haiyan Converge rates towards stationary solutions for the outflow problem of planar magnetohydrodynamics on a half line, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 149 (2019) no. 5, p. 1291 | DOI:10.1017/prm.2018.66
  • Lei, Zhen; Xin, Zhouping On scaling invariance and type-I singularities for the compressible Navier-Stokes equations, Science China Mathematics, Volume 62 (2019) no. 11, p. 2271 | DOI:10.1007/s11425-018-9363-1
  • De Lellis, Camillo The Masterpieces of John Forbes Nash Jr., The Abel Prize 2013-2017 (2019), p. 391 | DOI:10.1007/978-3-319-99028-6_19
  • Danchin, Raphaël; Mucha, Piotr Bogusław From compressible to incompressible inhomogeneous flows in the case of large data, Tunisian Journal of Mathematics, Volume 1 (2019) no. 1, p. 127 | DOI:10.2140/tunis.2019.1.127
  • Huang, Xiangdi; Li, Jing Global Classical and Weak Solutions to the Three-Dimensional Full Compressible Navier–Stokes System with Vacuum and Large Oscillations, Archive for Rational Mechanics and Analysis, Volume 227 (2018) no. 3, p. 995 | DOI:10.1007/s00205-017-1188-y
  • Li, Lin-an; Wang, Teng; Wang, Yi Stability of Planar Rarefaction Wave to 3D Full Compressible Navier–Stokes Equations, Archive for Rational Mechanics and Analysis, Volume 230 (2018) no. 3, p. 911 | DOI:10.1007/s00205-018-1260-2
  • Ngo, Van-Sang; Scrobogna, Stefano Dispersive effects of weakly compressible and fast rotating inviscid fluids, Discrete Continuous Dynamical Systems - A, Volume 38 (2018) no. 2, p. 749 | DOI:10.3934/dcds.2018033
  • Jiang, Song; Ju, Qiangchang Symmetric Solutions to the Viscous Gas Equations, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 1711 | DOI:10.1007/978-3-319-13344-7_35
  • Danchin, Raphaël Fourier Analysis Methods for the Compressible Navier-Stokes Equations, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 1843 | DOI:10.1007/978-3-319-13344-7_49
  • Kotschote, Matthias Local and Global Existence of Strong Solutions for the Compressible Navier-Stokes Equations Near Equilibria via the Maximal Regularity, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 1905 | DOI:10.1007/978-3-319-13344-7_50
  • Li, Jing; Xin, Zhou Ping Global Existence of Regular Solutions with Large Oscillations and Vacuum for Compressible Flows, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 2037 | DOI:10.1007/978-3-319-13344-7_58
  • Huang, Xiangdi; Xin, Zhou Ping Finite Time Blow-Up of Regular Solutions for Compressible Flows, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 2183 | DOI:10.1007/978-3-319-13344-7_57
  • Jiang, Song; Zhou, Chunhui Existence of Stationary Weak Solutions for Isentropic and Isothermal Compressible Flows, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 2549 | DOI:10.1007/978-3-319-13344-7_63
  • Giovangigli, Vincent Solutions for Models of Chemically Reacting Compressible Mixtures, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 2979 | DOI:10.1007/978-3-319-13344-7_73
  • Wang, Yun; Huang, Xiangdi On center singularity for compressible spherically symmetric nematic liquid crystal flows, Journal of Differential Equations, Volume 264 (2018) no. 8, p. 5197 | DOI:10.1016/j.jde.2017.12.035
  • Li, Yang Global well-posedness to the one-dimensional model for planar non-resistive magnetohydrodynamics with large data and vacuum, Journal of Mathematical Analysis and Applications, Volume 462 (2018) no. 2, p. 1342 | DOI:10.1016/j.jmaa.2018.02.047
  • Feng, Yue-Hong; Liu, Cun-Ming Stability of steady-state solutions to Navier–Stokes–Poisson systems, Journal of Mathematical Analysis and Applications, Volume 462 (2018) no. 2, p. 1679 | DOI:10.1016/j.jmaa.2018.03.001
  • Yin, Haiyan Stability of stationary solutions for inflow problem on the planar magnetohydrodynamics, Journal of Mathematical Physics, Volume 59 (2018) no. 2 | DOI:10.1063/1.5023583
  • Bae, H‐O.; Zajączkowski, Wojciech M. Global regular motions for compressible barotropic viscous fluids: Stability, Mathematical Methods in the Applied Sciences, Volume 41 (2018) no. 15, p. 5869 | DOI:10.1002/mma.4860
  • Guo, Zhenhua; Wang, Mei; Wang, Yi Global solution to 3D spherically symmetric compressible Navier–Stokes equations with large data, Nonlinear Analysis: Real World Applications, Volume 40 (2018), p. 260 | DOI:10.1016/j.nonrwa.2017.09.004
  • Si, Xin; Zhang, Jianwen; Zhao, Junning Global classical solutions of compressible isentropic Navier–Stokes equations with small density, Nonlinear Analysis: Real World Applications, Volume 42 (2018), p. 53 | DOI:10.1016/j.nonrwa.2017.12.005
  • Yin, Haiyan Stability of composite wave for inflow problem on the planar magnetohydrodynamics, Nonlinear Analysis: Real World Applications, Volume 44 (2018), p. 305 | DOI:10.1016/j.nonrwa.2018.05.008
  • Liang, Zhilei; Shuai, Jiangyu Global strong solution for the full MHD equations with vacuum and large data, Nonlinear Analysis: Real World Applications, Volume 44 (2018), p. 385 | DOI:10.1016/j.nonrwa.2018.05.012
  • Jiu, Quansen; Wang, Yi; Xin, Zhouping Global classical solution to two-dimensional compressible Navier–Stokes equations with large data inR2, Physica D: Nonlinear Phenomena, Volume 376-377 (2018), p. 180 | DOI:10.1016/j.physd.2017.12.006
  • Fang, Daoyuan; Zhang, Ting; Zi, Ruizhao Global Solutions to the Isentropic Compressible Navier–Stokes Equations with a Class of Large Initial Data, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 5, p. 4983 | DOI:10.1137/17m1122062
  • Yang, Jiayan; Liu, Ruikuan The existence results for a new 2‐D compressible fluid model with the horizontal thermal gradient effect, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 98 (2018) no. 8, p. 1302 | DOI:10.1002/zamm.201700176
  • Li, Yang Global strong solutions to the one-dimensional heat-conductive model for planar non-resistive magnetohydrodynamics with large data, Zeitschrift für angewandte Mathematik und Physik, Volume 69 (2018) no. 3 | DOI:10.1007/s00033-018-0970-5
  • Tani, Atusi, Volume 1903 (2017), p. 020003 | DOI:10.1063/1.5012614
  • Wang, Mei; Li, Zilai; Guo, Zhenhua Global weak solution to 3D compressible flows with density-dependent viscosity and free boundary, Communications on Pure Applied Analysis, Volume 16 (2017) no. 1, p. 1 | DOI:10.3934/cpaa.2017001
  • Shibata, Yoshihiro; Enomoto, Yuko Global Existence of Classical Solutions and Optimal Decay Rate Via the Theory of Semigroup, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2017), p. 1 | DOI:10.1007/978-3-319-10151-4_52-1
  • Jiang, Song; Zhou, Chunhui Existence of Stationary Weak Solutions for the Isentropic and Isothermal Flows, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2017), p. 1 | DOI:10.1007/978-3-319-10151-4_63-1
  • Kotschote, Matthias Local and Global Existence of Strong Solutions Near General Equilibria, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2017), p. 1 | DOI:10.1007/978-3-319-10151-4_50-1
  • Huang, Xiangdi Existence and uniqueness of weak solutions of the compressible spherically symmetric Navier–Stokes equations, Journal of Differential Equations, Volume 262 (2017) no. 3, p. 1341 | DOI:10.1016/j.jde.2016.10.013
  • Duan, Ran; Guo, Ai; Zhu, Changjiang Global strong solution to compressible Navier–Stokes equations with density dependent viscosity and temperature dependent heat conductivity, Journal of Differential Equations, Volume 262 (2017) no. 8, p. 4314 | DOI:10.1016/j.jde.2017.01.007
  • Li, Yachun; Pan, Ronghua; Zhu, Shengguo On Classical Solutions to 2D Shallow Water Equations with Degenerate Viscosities, Journal of Mathematical Fluid Mechanics, Volume 19 (2017) no. 1, p. 151 | DOI:10.1007/s00021-016-0276-3
  • Hu, Yuxi; Racke, Reinhard Compressible Navier–Stokes Equations with Revised Maxwell’s Law, Journal of Mathematical Fluid Mechanics, Volume 19 (2017) no. 1, p. 77 | DOI:10.1007/s00021-016-0266-5
  • Yin, Haiyan The stability of contact discontinuity for compressible planar magnetohydrodynamics, Kinetic Related Models, Volume 10 (2017) no. 4, p. 1235 | DOI:10.3934/krm.2017047
  • KONG, Huihui; LI, Hai-Liang; ZHANG, Xingwei A blow-up criterion of spherically symmetric strong solutions to 3d compressible navier-stokes equations with free boundary, Acta Mathematica Scientia, Volume 36 (2016) no. 4, p. 1153 | DOI:10.1016/s0252-9602(16)30060-1
  • Bian, Dongfen; Yuan, Baoquan Local well-posedness in critical spaces for the compressible MHD equations, Applicable Analysis, Volume 95 (2016) no. 2, p. 239 | DOI:10.1080/00036811.2014.910651
  • Huang, Xiangdi; Xin, Zhouping On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity, Discrete and Continuous Dynamical Systems, Volume 36 (2016) no. 8, p. 4477 | DOI:10.3934/dcds.2016.36.4477
  • Huang, Xiangdi; Xin, Zhou Ping Finite Time Blowup of Regular Solutions, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_57-1
  • LI, Jing; XIN, Zhouping Global Existence of Regular Solutions with Large Oscillations and Vacuum, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_58-1
  • Jiang, Song; Ju, Qiangchang Symmetric Solutions to the Viscous Gas Equations, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_35-1
  • Danchin, Raphaël Fourier Analysis Methods for the Compressible Navier-Stokes Equations, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_49-1
  • Giovangigli, Vincent Solutions for Models of Chemically Reacting Mixtures, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_73-1
  • Sun, Yongzhong; Zhang, Zhifei Blow-Up Criteria of Strong Solutions and Conditional Regularity of Weak Solutions, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_54-1
  • Huang, Xiangdi; Li, Jing Existence and blowup behavior of global strong solutions to the two-dimensional barotrpic compressible Navier–Stokes system with vacuum and large initial data, Journal de Mathématiques Pures et Appliquées, Volume 106 (2016) no. 1, p. 123 | DOI:10.1016/j.matpur.2016.02.003
  • Hu, Yuxi; Racke, Reinhard Compressible Navier–Stokes Equations with hyperbolic heat conduction, Journal of Hyperbolic Differential Equations, Volume 13 (2016) no. 02, p. 233 | DOI:10.1142/s0219891616500077
  • Wan, Ling; Wang, Tao Large-time behavior of solutions to the equations of a viscous heat-conducting flow with shear viscosity in unbounded domains, Journal of Mathematical Analysis and Applications, Volume 436 (2016) no. 1, p. 366 | DOI:10.1016/j.jmaa.2015.11.062
  • Cai, Xiaoyun; Sun, Yongzhong Blowup criteria for strong solutions to the compressible Navier–Stokes equations with variable viscosity, Nonlinear Analysis: Real World Applications, Volume 29 (2016), p. 1 | DOI:10.1016/j.nonrwa.2015.10.007
  • Fang, Li; Guo, Zhenhua Global well-posedness of strong solutions to the two-dimensional barotropic compressible Navier–Stokes equations with vacuum, Zeitschrift für angewandte Mathematik und Physik, Volume 67 (2016) no. 2 | DOI:10.1007/s00033-016-0619-1
  • LU, Yunguang; KLINGENBERG, Christian; KOLEY, Ujjwal; LU, Xuezhou Decay rate for degenerate convection diffusion equations in both one and several space dimensions, Acta Mathematica Scientia, Volume 35 (2015) no. 2, p. 281 | DOI:10.1016/s0252-9602(15)60001-7
  • Zhao, Junning; Zhang, Jianwen; Zhang, Peixin On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum, Discrete and Continuous Dynamical Systems, Volume 36 (2015) no. 2, p. 1085 | DOI:10.3934/dcds.2016.36.1085
  • Paddick, Matthew The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions, Discrete and Continuous Dynamical Systems, Volume 36 (2015) no. 5, p. 2673 | DOI:10.3934/dcds.2016.36.2673
  • Chikami, Noboru; Danchin, Raphaël On the well-posedness of the full compressible Navier–Stokes system in critical Besov spaces, Journal of Differential Equations, Volume 258 (2015) no. 10, p. 3435 | DOI:10.1016/j.jde.2015.01.012
  • Zhu, Shengguo Existence results for viscous polytropic fluids with degenerate viscosity coefficients and vacuum, Journal of Differential Equations, Volume 259 (2015) no. 1, p. 84 | DOI:10.1016/j.jde.2015.01.048
  • Qian, Jinju; Zhao, Junning Global existence of classical solutions for isentropic compressible Navier–Stokes equations with small initial density, Journal of Differential Equations, Volume 259 (2015) no. 11, p. 6830 | DOI:10.1016/j.jde.2015.08.007
  • Li, Zilai; Guo, Zhenhua Global existence of weak solution to the free boundary problem for compressible Navier-Stokes, Kinetic and Related Models, Volume 9 (2015) no. 1, p. 75 | DOI:10.3934/krm.2016.9.75
  • Huang, Xiangdi On formation of singularity of spherically symmetric nonbarotropic flows, Kyoto Journal of Mathematics, Volume 55 (2015) no. 1 | DOI:10.1215/21562261-2801813
  • Hu, Yuxi On initial boundary value problems for planar magnetohydrodynamics with large data, Mathematical Methods in the Applied Sciences, Volume 38 (2015) no. 17, p. 4111 | DOI:10.1002/mma.3351
  • Zhang, Peixin Global classical solution to the 3D isentropic compressible Navier-Stokes equations with general initial data and a density-dependent viscosity coefficient, Mathematical Methods in the Applied Sciences, Volume 38 (2015) no. 6, p. 1158 | DOI:10.1002/mma.3137
  • Lai, Ning-An Blow up of classical solutions to the isentropic compressible Navier–Stokes equations, Nonlinear Analysis: Real World Applications, Volume 25 (2015), p. 112 | DOI:10.1016/j.nonrwa.2015.03.005
  • Lv, Boqiang; Huang, Bin On strong solutions to the Cauchy problem of the two-dimensional compressible magnetohydrodynamic equations with vacuum, Nonlinearity, Volume 28 (2015) no. 2, p. 509 | DOI:10.1088/0951-7715/28/2/509
  • Hu, Yuxi On global solutions and asymptotic behavior of planar magnetohydrodynamics with large data, Quarterly of Applied Mathematics, Volume 73 (2015) no. 4, p. 759 | DOI:10.1090/qam/1413
  • Li, Jing; Zhang, Jianwen; Zhao, Junning On the Global Motion of Viscous Compressible Barotropic Flows Subject to Large External Potential Forces and Vacuum, SIAM Journal on Mathematical Analysis, Volume 47 (2015) no. 2, p. 1121 | DOI:10.1137/130941298
  • Hu, Yuxi; Ju, Qiangchang Global large solutions of magnetohydrodynamics with temperature-dependent heat conductivity, Zeitschrift für angewandte Mathematik und Physik, Volume 66 (2015) no. 3, p. 865 | DOI:10.1007/s00033-014-0446-1
  • YE, Yulin; DOU, Changsheng; JIU, Quansen Local well-posedness to the cauchy problem of the 3-D compressible navier-stokes equations with density-dependent viscosity, Acta Mathematica Scientia, Volume 34 (2014) no. 3, p. 851 | DOI:10.1016/s0252-9602(14)60055-2
  • Wang, Yongfu; Zhang, Qin Blowup analysis for two-dimensional viscous compressible, heat-conductive Navier–Stokes equations, Applied Mathematics and Computation, Volume 232 (2014), p. 719 | DOI:10.1016/j.amc.2014.01.103
  • Perepelitsa, Misha Weak Solutions of the Navier–Stokes Equations for Compressible Flows in a Half-Space with No-Slip Boundary Conditions, Archive for Rational Mechanics and Analysis, Volume 212 (2014) no. 3, p. 709 | DOI:10.1007/s00205-014-0727-z
  • Wang, Chao; Wang, Wei; Zhang, Zhifei Global Well-Posedness of Compressible Navier–Stokes Equations for Some Classes of Large Initial Data, Archive for Rational Mechanics and Analysis, Volume 213 (2014) no. 1, p. 171 | DOI:10.1007/s00205-014-0735-z
  • Kotschote, Matthias Dynamical Stability of Non-Constant Equilibria for the Compressible Navier–Stokes Equations in Eulerian Coordinates, Communications in Mathematical Physics, Volume 328 (2014) no. 2, p. 809 | DOI:10.1007/s00220-014-2023-z
  • Li, Jing; Liang, Zhilei On local classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier–Stokes equations with vacuum, Journal de Mathématiques Pures et Appliquées, Volume 102 (2014) no. 4, p. 640 | DOI:10.1016/j.matpur.2014.02.001
  • Jiu, Quansen; Wang, Yi; Xin, Zhouping Global Well-Posedness of 2D Compressible Navier–Stokes Equations with Large Data and Vacuum, Journal of Mathematical Fluid Mechanics, Volume 16 (2014) no. 3, p. 483 | DOI:10.1007/s00021-014-0171-8
  • Dou, Changsheng; Jiu, Quansen Remark on stability of rarefaction waves to the one‐dimensional compressible Navier–Stokes equations with density‐dependent viscosity coefficient, Mathematical Methods in the Applied Sciences, Volume 37 (2014) no. 1, p. 32 | DOI:10.1002/mma.2781
  • Suen, Anthony Global existence of weak solution to Navier–Stokes equations with large external force and general pressure, Mathematical Methods in the Applied Sciences, Volume 37 (2014) no. 17, p. 2716 | DOI:10.1002/mma.3012
  • Luo, Zhen Global existence of classical solutions to two‐dimensional Navier–Stokes equations with Cauchy data containing vacuum, Mathematical Methods in the Applied Sciences, Volume 37 (2014) no. 9, p. 1333 | DOI:10.1002/mma.2896
  • Wang, Yun One new blowup criterion for the 2D full compressible Navier–Stokes system, Nonlinear Analysis: Real World Applications, Volume 16 (2014), p. 214 | DOI:10.1016/j.nonrwa.2013.09.020
  • Feng, Yue-Hong; Peng, Yue-Jun; Wang, Shu Asymptotic behavior of global smooth solutions for full compressible Navier–Stokes–Maxwell equations, Nonlinear Analysis: Real World Applications, Volume 19 (2014), p. 105 | DOI:10.1016/j.nonrwa.2014.03.004
  • Łasica, Michał On steady solutions to vacuumless Newtonian models of compressible flow, Nonlinearity, Volume 27 (2014) no. 11, p. 2663 | DOI:10.1088/0951-7715/27/11/2663
  • Zhang, PeiXin; Zhao, JunNing Existence and uniqueness of global classical solutions to 3D isentropic compressible Navier-Stokes equations with general initial data, Science China Mathematics, Volume 57 (2014) no. 7, p. 1463 | DOI:10.1007/s11425-013-4717-7
  • BIAN, Dongfen; GUO, Boling Well-Posedness in Critical Spaces for the Full Compressible Mhd Equations, Acta Mathematica Scientia, Volume 33 (2013) no. 4, p. 1153 | DOI:10.1016/s0252-9602(13)60071-5
  • Liu, Shengquan; Zhang, Jianwen A note on the blow-up criterion for the compressible isentropic Navier–Stokes equations with vacuum, Applied Mathematics Letters, Volume 26 (2013) no. 5, p. 584 | DOI:10.1016/j.aml.2012.12.011
  • Huang, Xiangdi; Li, Jing; Wang, Yong Serrin-Type Blowup Criterion for Full Compressible Navier–Stokes System, Archive for Rational Mechanics and Analysis, Volume 207 (2013) no. 1, p. 303 | DOI:10.1007/s00205-012-0577-5
  • Xin, Zhouping; Yan, Wei On Blowup of Classical Solutions to the Compressible Navier-Stokes Equations, Communications in Mathematical Physics, Volume 321 (2013) no. 2, p. 529 | DOI:10.1007/s00220-012-1610-0
  • Huang, Xiangdi; Li, Jing Serrin-Type Blowup Criterion for Viscous, Compressible, and Heat Conducting Navier-Stokes and Magnetohydrodynamic Flows, Communications in Mathematical Physics, Volume 324 (2013) no. 1, p. 147 | DOI:10.1007/s00220-013-1791-1
  • Zhang, Jingjun; Zhu, Junlei Global solutions for a one-dimensional problem in conducting fluids, Communications in Nonlinear Science and Numerical Simulation, Volume 18 (2013) no. 8, p. 1989 | DOI:10.1016/j.cnsns.2012.12.008
  • Duan, Ben; Luo, Zhen Dynamics of vacuum states for one-dimensional full compressible Navier-Stokes equations, Communications on Pure Applied Analysis, Volume 12 (2013) no. 6, p. 2543 | DOI:10.3934/cpaa.2013.12.2543
  • Enomoto, Yuko; Shibata, Yoshihiro On the $\mathcal{R}$-Sectoriality and the Initial Boundary Value Problem for the Viscous Compressible Fluid Flow, Funkcialaj Ekvacioj, Volume 56 (2013) no. 3, p. 441 | DOI:10.1619/fesi.56.441
  • Jiu, Quansen; Wang, Yi; Xin, Zhouping Global well-posedness of the Cauchy problem of two-dimensional compressible Navier–Stokes equations in weighted spaces, Journal of Differential Equations, Volume 255 (2013) no. 3, p. 351 | DOI:10.1016/j.jde.2013.04.014
  • Liu, Shengquan; Zhang, Jianwen; Zhao, Junning Global classical solutions for 3D compressible Navier–Stokes equations with vacuum and a density-dependent viscosity coefficient, Journal of Mathematical Analysis and Applications, Volume 401 (2013) no. 2, p. 795 | DOI:10.1016/j.jmaa.2012.12.056
  • Huang, Xiangdi; Wang, Yun A Serrin criterion for compressible nematic liquid crystal flows, Mathematical Methods in the Applied Sciences, Volume 36 (2013) no. 11, p. 1363 | DOI:10.1002/mma.2689
  • Suen, Anthony Global solutions of the Navier–Stokes equations for isentropic flow with large external potential force, Zeitschrift für angewandte Mathematik und Physik, Volume 64 (2013) no. 3, p. 767 | DOI:10.1007/s00033-012-0263-3
  • Peixin, Zhang; Xuemei, Deng; Junning, Zhao Global Classical Solutions to the 3-D Isentropic Compressible Navier-Stokes Equations with General Initial Energy, Acta Mathematica Scientia, Volume 32 (2012) no. 6, p. 2141 | DOI:10.1016/s0252-9602(12)60166-0
  • Huang, Xiangdi; Li, Jing; Xin, Zhouping Global well‐posedness of classical solutions with large oscillations and vacuum to the three‐dimensional isentropic compressible Navier‐Stokes equations, Communications on Pure and Applied Mathematics, Volume 65 (2012) no. 4, p. 549 | DOI:10.1002/cpa.21382
  • Deng, XueMei; Zhang, PeiXin; Zhao, JunNing Global classical solution to the three-dimensional isentropic compressible Navier-Stokes equations with general initial data, Science China Mathematics, Volume 55 (2012) no. 12, p. 2457 | DOI:10.1007/s11425-012-4481-0
  • Haspot, Boris Existence of strong solutions in critical spaces for barotropic viscous fluids in larger spaces, Science China Mathematics, Volume 55 (2012) no. 2, p. 309 | DOI:10.1007/s11425-012-4360-8
  • Haspot, Boris Existence of Global Strong Solutions in Critical Spaces for Barotropic Viscous Fluids, Archive for Rational Mechanics and Analysis, Volume 202 (2011) no. 2, p. 427 | DOI:10.1007/s00205-011-0430-2
  • Huang, Xiangdi; Li, Jing; Xin, Zhouping Blowup Criterion for Viscous Baratropic Flows with Vacuum States, Communications in Mathematical Physics, Volume 301 (2011) no. 1, p. 23 | DOI:10.1007/s00220-010-1148-y
  • Dongfen Bian; Baoquan Yuan; Yue Hu, International Conference on Information Science and Technology (2011), p. 1098 | DOI:10.1109/icist.2011.5765162
  • Sun, Yongzhong; Wang, Chao; Zhang, Zhifei A Beale–Kato–Majda blow-up criterion for the 3-D compressible Navier–Stokes equations, Journal de Mathématiques Pures et Appliquées, Volume 95 (2011) no. 1, p. 36 | DOI:10.1016/j.matpur.2010.08.001
  • Li, Jing; Matsumura, Akitaka On the Navier–Stokes equations for three-dimensional compressible barotropic flow subject to large external potential forces with discontinuous initial data, Journal de Mathématiques Pures et Appliquées, Volume 95 (2011) no. 5, p. 495 | DOI:10.1016/j.matpur.2010.12.002
  • Haspot, Boris Well-posedness in critical spaces for the system of compressible Navier–Stokes in larger spaces, Journal of Differential Equations, Volume 251 (2011) no. 8, p. 2262 | DOI:10.1016/j.jde.2011.06.013
  • Germain, Pierre Weak–Strong Uniqueness for the Isentropic Compressible Navier–Stokes System, Journal of Mathematical Fluid Mechanics, Volume 13 (2011) no. 1, p. 137 | DOI:10.1007/s00021-009-0006-1
  • Wang, Changjia; Yuan, Hongjun Global strong solutions for a class of compressible non-Newtonian fluids with vacuum, Mathematical Methods in the Applied Sciences, Volume 34 (2011) no. 4, p. 397 | DOI:10.1002/mma.1364
  • Dias, João Paulo; Frid, Hermano Short Wave–Long Wave Interactions for Compressible Navier–Stokes Equations, SIAM Journal on Mathematical Analysis, Volume 43 (2011) no. 2, p. 764 | DOI:10.1137/100806746
  • Huang, Xiangdi; Li, Jing; Xin, Zhouping Serrin-Type Criterion for the Three-Dimensional Viscous Compressible Flows, SIAM Journal on Mathematical Analysis, Volume 43 (2011) no. 4, p. 1872 | DOI:10.1137/100814639
  • Sun, YongZhong; Zhang, ZhiFei A blow-up criterion of strong solutions to the 2D compressible Navier-Stokes equations, Science China Mathematics, Volume 54 (2011) no. 1, p. 105 | DOI:10.1007/s11425-010-4045-0
  • Charve, Frédéric; Danchin, Raphaël A Global Existence Result for the Compressible Navier–Stokes Equations in the Critical L p Framework, Archive for Rational Mechanics and Analysis, Volume 198 (2010) no. 1, p. 233 | DOI:10.1007/s00205-010-0306-x
  • Chen, Qionglei; Miao, Changxing; Zhang, Zhifei Global well‐posedness for compressible Navier‐Stokes equations with highly oscillating initial velocity, Communications on Pure and Applied Mathematics, Volume 63 (2010) no. 9, p. 1173 | DOI:10.1002/cpa.20325
  • Amosova, E. V. Optimal control of the acceleration of a conducting gas, Journal of Applied and Industrial Mathematics, Volume 4 (2010) no. 1, p. 6 | DOI:10.1134/s1990478910010023
  • Wang, Changjia; Yuan, Hongjun Global strong solutions for a class of heat-conducting non-Newtonian fluids with vacuum, Nonlinear Analysis: Real World Applications, Volume 11 (2010) no. 5, p. 3680 | DOI:10.1016/j.nonrwa.2010.01.014
  • Danchin, Raphaël On the solvability of the compressible Navier–Stokes system in bounded domains, Nonlinearity, Volume 23 (2010) no. 2, p. 383 | DOI:10.1088/0951-7715/23/2/009
  • Jenssen, Helge Kristian; Karper, Trygve Klovning One-Dimensional Compressible Flow with Temperature Dependent Transport Coefficients, SIAM Journal on Mathematical Analysis, Volume 42 (2010) no. 2, p. 904 | DOI:10.1137/090763135
  • Fan, Jishan; Yu, Wanghui Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Analysis: Real World Applications, Volume 10 (2009) no. 1, p. 392 | DOI:10.1016/j.nonrwa.2007.10.001
  • Rozanova, Olga Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier–Stokes equations, Journal of Differential Equations, Volume 245 (2008) no. 7, p. 1762 | DOI:10.1016/j.jde.2008.07.007
  • Danchin, R. Well-Posedness in Critical Spaces for Barotropic Viscous Fluids with Truly Not Constant Density, Communications in Partial Differential Equations, Volume 32 (2007) no. 9, p. 1373 | DOI:10.1080/03605300600910399
  • Rozanova, O. S. Formation of singularities of solutions of the equations of motion of compressible fluids subjected to external forces in the case of several spatial variables, Journal of Mathematical Sciences, Volume 143 (2007) no. 4, p. 3355 | DOI:10.1007/s10958-007-0214-2
  • Cho, Yonggeun; Kim, Hyunseok Existence results for viscous polytropic fluids with vacuum, Journal of Differential Equations, Volume 228 (2006) no. 2, p. 377 | DOI:10.1016/j.jde.2006.05.001
  • Gatapov, B. V.; Kazhikhov, A. V. Existence of a Global Solution to One Model Problem of Atmosphere Dynamics, Siberian Mathematical Journal, Volume 46 (2005) no. 5, p. 805 | DOI:10.1007/s11202-005-0079-x
  • Cho, Yonggeun; Choe, Hi Jun; Kim, Hyunseok Unique solvability of the initial boundary value problems for compressible viscous fluids, Journal de Mathématiques Pures et Appliquées, Volume 83 (2004) no. 2, p. 243 | DOI:10.1016/j.matpur.2003.11.004
  • Buccellato, Stefania; Yashima, Hisao Fujita Système d'équations d'un gaz visqueux modélisant l'atmosphère avec la force de Coriolis et la stabilité de l'état d'équilibre, ANNALI DELL UNIVERSITA DI FERRARA, Volume 49 (2003) no. 1, p. 127 | DOI:10.1007/bf02844913
  • Wang, Dehua Global solutions of the Navier–Stokes equations for viscous compressible flows, Nonlinear Analysis: Theory, Methods Applications, Volume 52 (2003) no. 8, p. 1867 | DOI:10.1016/s0362-546x(02)00280-8
  • Wang, Dehua On the global solution and interface behaviour of viscous compressible real flow with free boundaries, Nonlinearity, Volume 16 (2003) no. 2, p. 719 | DOI:10.1088/0951-7715/16/2/321
  • Wang, Dehua Large Solutions to the Initial-Boundary Value Problem for Planar Magnetohydrodynamics, SIAM Journal on Applied Mathematics, Volume 63 (2003) no. 4, p. 1424 | DOI:10.1137/s0036139902409284
  • Hsiao, Ling; Jiang, Song Chapter 4 Nonlinear hyperbolic—parabolic coupled systems, Volume 1 (2002), p. 287 | DOI:10.1016/s1874-5717(04)80006-9
  • Feireisl, Eduard Viscous and/or Heat Conducting Compressible Fluids, Volume 1 (2002), p. 307 | DOI:10.1016/s1874-5792(02)80010-6
  • Friedlander, Susan; Serre, Denis Preface, Volume 1 (2002), p. v | DOI:10.1016/s1874-5792(02)80001-5
  • Chen, Gui-Qiang; Wang, Dehua Global Solutions of Nonlinear Magnetohydrodynamics with Large Initial Data, Journal of Differential Equations, Volume 182 (2002) no. 2, p. 344 | DOI:10.1006/jdeq.2001.4111
  • Danchin, Raphaël LOCAL THEORY IN CRITICAL SPACES FOR COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE GASES, Communications in Partial Differential Equations, Volume 26 (2001) no. 7-8, p. 1183 | DOI:10.1081/pde-100106132
  • References, Nonlinear Wave Equations Perturbed by Viscous Terms (2000), p. 239 | DOI:10.1515/9783110811902.239
  • Guo, Boling; Zhu, Peicheng Asymptotic Behavior of the Solution to the System for a Viscous Reactive Gas, Journal of Differential Equations, Volume 155 (1999) no. 1, p. 177 | DOI:10.1006/jdeq.1998.3578
  • Mamontov, A E Existence of global solutions of multidimensional Burgers's equations of a compressible viscous fluid, Sbornik: Mathematics, Volume 190 (1999) no. 8, p. 1131 | DOI:10.1070/sm1999v190n08abeh000420
  • Mamontov, A. E. Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity. I, Siberian Mathematical Journal, Volume 40 (1999) no. 2, p. 351 | DOI:10.1007/s11202-999-0014-7
  • Мамонтов, Александр Евгеньевич; Mamontov, Alexander Evgenievich Существование глобальных решений многомерных уравнений Бюргерса сжимаемой вязкой жидкости, Математический сборник, Volume 190 (1999) no. 8, p. 61 | DOI:10.4213/sm420
  • Tonel, Laura On existence of global solutions to the Navier-Stokes equations for compressible and viscous flows on the surface of a sphere, ANNALI DELL UNIVERSITA DI FERRARA, Volume 44 (1998) no. 1, p. 63 | DOI:10.1007/bf02828017
  • Lu, Yun-Guang Existence of a Global Solution for a Viscoelastic System, Journal of Mathematical Analysis and Applications, Volume 218 (1998) no. 1, p. 175 | DOI:10.1006/jmaa.1997.5754
  • Jäger, W.; Lu, Yunguang Global Regularity of Solution for General Degenerate Parabolic Equations in 1-D, Journal of Differential Equations, Volume 140 (1997) no. 2, p. 365 | DOI:10.1006/jdeq.1997.3313
  • Solonnikov, V. A. The solvability of the initial boundary-value problem for equations of motion of a viscous compressible barotropic liquid in the spacesW 2 l+1,l/2+1 (Q T ), Journal of Mathematical Sciences, Volume 77 (1995) no. 3, p. 3250 | DOI:10.1007/bf02364719
  • Kazhikhov, A. V. The equation of potential flows of a compressible viscous fluid at small reynolds numbers: Existence, uniqueness, and stabilization of solutions, Siberian Mathematical Journal, Volume 34 (1993) no. 3, p. 457 | DOI:10.1007/bf00971220
  • Literature, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Volume 22 (1990), p. 297 | DOI:10.1016/s0168-2024(08)70075-4
  • Mannucci, Paola A combustion problem in cylindrical and spherical symmetry, Meccanica, Volume 25 (1990) no. 1, p. 47 | DOI:10.1007/bf02015035
  • Padula, Mariarosaria Existence and uniqueness for viscous steady compressible motions, Archive for Rational Mechanics and Analysis, Volume 97 (1987) no. 2, p. 89 | DOI:10.1007/bf00251910
  • Valli, Alberto; Zajaczkowski, Wojciech M. Navier-stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case, Communications in Mathematical Physics, Volume 103 (1986) no. 2, p. 259 | DOI:10.1007/bf01206939
  • Neustupa, J. The global existence of weak solutions of the mollified system of equations of motion of viscous compressible fluid, Equadiff 6, Volume 1192 (1986), p. 409 | DOI:10.1007/bfb0076101
  • Nagasawa, Takeyuki On the one-dimensional motion of the polytropic ideal gas non-fixed on the boundary, Journal of Differential Equations, Volume 65 (1986) no. 1, p. 49 | DOI:10.1016/0022-0396(86)90041-0
  • Nishida, Takaaki Equations of Motion of Compressible Viscous Fluids, Patterns and Waves - Qualitative Analysis of Nonlinear Differential Equations, Volume 18 (1986), p. 97 | DOI:10.1016/s0168-2024(08)70129-2
  • Hoff, David Construction of solutions for compressible, isentropic Navier-Stokes equations in one space dimension with nonsmooth initial data, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 103 (1986) no. 3-4, p. 301 | DOI:10.1017/s0308210500018953
  • Bebernes, J.; Bressan, A. Global a priori estimates for a viscous reactive gas, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 101 (1985) no. 3-4, p. 321 | DOI:10.1017/s0308210500020862
  • Lagha-Benabdallah, A. Limites des equations d’un fluide compressible lorsque la compressibilite tend vers zero, Fluid Dynamics, Volume 1047 (1984), p. 139 | DOI:10.1007/bfb0072329
  • Fiszdon, W.; Zajaczkowski, W. M.; Gilbert, R. P. The Initial Boundary Value Problem for the Flow of a Barotropic Viscous Fluid, Global in Time, Applicable Analysis, Volume 15 (1983) no. 1-4, p. 91 | DOI:10.1080/00036818308839441
  • Hui, Shih Wei On the Cauchy Problem for the Equation of a General Fluid, Bifurcation Theory, Mechanics and Physics (1983), p. 109 | DOI:10.1007/978-94-009-7192-9_6
  • Valli, Alberto An existence theorem for compressible viscous fluids, Annali di Matematica Pura ed Applicata, Volume 130 (1982) no. 1, p. 197 | DOI:10.1007/bf01761495
  • Ton, Bui An On the initial-boundary value problem for viscous heat conducting compressible fluids, Kodai Mathematical Journal, Volume 4 (1981) no. 1 | DOI:10.2996/kmj/1138036314
  • Padula, Mariarosaria Existence and continuous dependence for solutions to the equations of a one-dimensional model in gas-dynamics, Meccanica, Volume 16 (1981) no. 3, p. 128 | DOI:10.1007/bf02128441
  • Ton, Bui An Existence and Uniqueness of a Classical Solution of an Initial-Boundary Value Problem of the Theory of Shallow Waters, SIAM Journal on Mathematical Analysis, Volume 12 (1981) no. 2, p. 229 | DOI:10.1137/0512022
  • Solonnikov, V. A. Solvability of the initial-boundary-value problem for the equations of motion of a viscous compressible fluid, Journal of Soviet Mathematics, Volume 14 (1980) no. 2, p. 1120 | DOI:10.1007/bf01562053
  • Ton, Bui An On the initial value problem for compressible fluid flows with vanishing viscosity, Kodai Mathematical Journal, Volume 3 (1980) no. 1 | DOI:10.2996/kmj/1138036123
  • Kanel', Ya. I. Cauchy problem for the equations of gasdynamics with viscosity, Siberian Mathematical Journal, Volume 20 (1979) no. 2, p. 208 | DOI:10.1007/bf00970025
  • Kato, Tosio Quasi-linear equations of evolution, with applications to partial differential equations, Spectral Theory and Differential Equations, Volume 448 (1975), p. 25 | DOI:10.1007/bfb0067080

Cité par 298 documents. Sources : Crossref