Commutative semigroups whose lattice of congruences is a chain
Bulletin de la Société Mathématique de France, Tome 97 (1969), pp. 369-380.
@article{BSMF_1969__97__369_0,
     author = {Tamura, T.},
     title = {Commutative semigroups whose lattice of congruences is a chain},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {369--380},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {97},
     year = {1969},
     doi = {10.24033/bsmf.1689},
     mrnumber = {41 #5527},
     zbl = {0191.01705},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.1689/}
}
TY  - JOUR
AU  - Tamura, T.
TI  - Commutative semigroups whose lattice of congruences is a chain
JO  - Bulletin de la Société Mathématique de France
PY  - 1969
SP  - 369
EP  - 380
VL  - 97
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.1689/
DO  - 10.24033/bsmf.1689
LA  - en
ID  - BSMF_1969__97__369_0
ER  - 
%0 Journal Article
%A Tamura, T.
%T Commutative semigroups whose lattice of congruences is a chain
%J Bulletin de la Société Mathématique de France
%D 1969
%P 369-380
%V 97
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.1689/
%R 10.24033/bsmf.1689
%G en
%F BSMF_1969__97__369_0
Tamura, T. Commutative semigroups whose lattice of congruences is a chain. Bulletin de la Société Mathématique de France, Tome 97 (1969), pp. 369-380. doi : 10.24033/bsmf.1689. https://www.numdam.org/articles/10.24033/bsmf.1689/

[1] Clifford (A. H.). - Naturally totally ordered commutative semigroups, Amer. J. Math., t. 76, 1954, p. 631-646. | MR | Zbl

[2] Clifford (A. H.) and Preston (G. B.). - The algebraic theory of semigroups, vol. 1. - Providence, American mathematical Society, 1961 (Mathematical Surveys, 7). | MR | Zbl

[3] Fuchs (L.). - Abelian groups. - Budapest, Publishing House of Hungarian Academy of Science, 1958. | MR | Zbl

[4] Schenkman (E.). - Group theory. - Princeton (New Jersey), D. Van Nostrand, 1965. | MR | Zbl

[5] Ševrin (L. N.). - Semigroups with certain types of sub-semigroup lattices, Soviet Math. Dokl., t. 2, 1961, p. 737-740. | Zbl

[6] Tamura (T.). - Note on unipotent inversible semigroups, Kodai math. Sem. Rep., t. 3, 1954, p. 93-95. | MR | Zbl

[7] Tamura (T.) and Kimura (N.). - On decomposition of a commutative semigroup, Kodai math. Sem. Rep., t. 4, 1954, p. 109-112. | MR | Zbl

[8] Tamura (T.). - On a monoid whose submonoids form a chain, J. Gakugei, Tokushima Univ., t. 5, 1954, p. 8-16. | MR | Zbl

[9] Tamura (T.) and Kimura (N.). - Existence of greatest decomposition of a semigroup, Kodai math. Sem. Rep., t. 7, 1955, p. 83-84. | MR | Zbl

[10] Tamura (T.). - Indecomposable completely simple semigroups except groups, Osaka math. J., t. 8, 1956, p. 35-42. | MR | Zbl

[11] Tamura (T.). - The theory of construction of finite semigroups, I, Osaka math. J., t. 8, 1956, p. 243-261. | MR | Zbl

[12] Tamura (T.). - Commutative nonpotent archimedean semigroup with cancellation law, I, J. Gakugei, Tokushima Univ., t. 8, 1957, p. 5-11. | MR | Zbl

[13] Tamura (T.). - Another proof of a theorem concerning the greatest semilattice-decomposition of a semigroup, Proc. Jap. Acad., t. 40, 1964, p. 777-780. | MR | Zbl

[14] Tamura (T.). - Notes on commutative archimedean semigroups, I, Proc. Japan Acad., t. 42, 1966, p. 35-40. | MR | Zbl

[15] Tamura (T.). - Decomposability of extension and its application to finite semigroups, Proc. Japan Acad., t. 43, 1967, p. 93-97. | MR | Zbl

[16] Tamura (T.). - Construction of trees and commutative archimedean semigroups, Math. Nachrichten, Band 36, 1968, p. 255-287. | MR | Zbl

[17] Tully (E. J.). - H-commutative semigroups in which each homomorphism is uniquely determined by its kernel, Pacific J. of Math. (to be published). | Zbl

  • Popovich, Alexander L.; Jones, Peter R. On congruence lattices of nilsemigroups, Semigroup Forum, Volume 95 (2017) no. 2, p. 314 | DOI:10.1007/s00233-016-9837-2
  • Kandarpa, Venkata R. S. On Commutative Δ-Semigroups, Advances in Pure Mathematics, Volume 06 (2016) no. 05, p. 309 | DOI:10.4236/apm.2016.65021
  • Derech, V. D. Classification of Finite Commutative Semigroups for Which the Inverse Monoid of Local Automorphisms is a ∆-Semigroup, Ukrainian Mathematical Journal, Volume 67 (2015) no. 7, p. 981 | DOI:10.1007/s11253-015-1130-0
  • Derech, V. D. Characterization of the semilattice of idempotents of a finite-rank permutable inverse semigroup with zero, Ukrainian Mathematical Journal, Volume 59 (2007) no. 10, p. 1517 | DOI:10.1007/s11253-008-0011-1
  • Jiang, Zhonghao; Chen, Limin On RDGCn-commutative permutable semigroups, Periodica Mathematica Hungarica, Volume 49 (2004) no. 2, p. 91 | DOI:10.1007/s10998-004-0524-9
  • Jiang, Zhonghao LC-commutative permutable semigroups, Semigroup Forum, Volume 52 (1996) no. 1, p. 191 | DOI:10.1007/bf02574095
  • Nagy, Attila RC-commutative Δ-semigroups, Semigroup Forum, Volume 44 (1992) no. 1, p. 332 | DOI:10.1007/bf02574352
  • Nagy, Attila On the structure of (m, n)-commutative semigroups, Semigroup Forum, Volume 45 (1992) no. 1, p. 183 | DOI:10.1007/bf03025759
  • Nagy, Attila Weakly exponential Δ-semigroups, Semigroup Forum, Volume 40 (1990) no. 1, p. 297 | DOI:10.1007/bf02573275
  • Cherubini, A.; Varisco, A. Permutable duo semigroups, Semigroup Forum, Volume 28 (1984) no. 1, p. 155 | DOI:10.1007/bf02572482
  • Nagy, Attila Weakly exponential semigroups, Semigroup Forum, Volume 28 (1984) no. 1, p. 291 | DOI:10.1007/bf02572490
  • Mitsch, Heinz Semigroups and their lattice of congruences, Semigroup Forum, Volume 26 (1983) no. 1, p. 1 | DOI:10.1007/bf02572819
  • Jones, P. R. Inverse semigroups whose full inverse subsemigroups form a chain, Glasgow Mathematical Journal, Volume 22 (1981) no. 2, p. 159 | DOI:10.1017/s0017089500004626
  • Schein, Boris M. Pseudosimple commutative semigroups, Monatshefte f�r Mathematik, Volume 91 (1981) no. 1, p. 77 | DOI:10.1007/bf01306958
  • Kozhukhov, I. B. Left chain semigroups, Semigroup Forum, Volume 22 (1981) no. 1, p. 1 | DOI:10.1007/bf02572781
  • Tamura, Takayuki SEMIGROUPS WHOSE CONGRUENCES FORM A CHAIN AND WHICH ARE EXTENSIONS OF CONGRUENCE–FREE SEMIGROUPS, Semigroups (1980), p. 85 | DOI:10.1016/b978-0-12-319450-3.50012-8
  • Trotter, Peter G. Exponential Δ-semigroups, Semigroup Forum, Volume 12 (1976) no. 1, p. 313 | DOI:10.1007/bf02195938
  • Hamilton, Howard Permutability of congruences on commutative semigroups, Semigroup Forum, Volume 10 (1975) no. 1, p. 55 | DOI:10.1007/bf02194872

Cité par 18 documents. Sources : Crossref