@article{BSMF_1969__97__369_0, author = {Tamura, T.}, title = {Commutative semigroups whose lattice of congruences is a chain}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {369--380}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {97}, year = {1969}, doi = {10.24033/bsmf.1689}, mrnumber = {41 #5527}, zbl = {0191.01705}, language = {en}, url = {https://www.numdam.org/articles/10.24033/bsmf.1689/} }
TY - JOUR AU - Tamura, T. TI - Commutative semigroups whose lattice of congruences is a chain JO - Bulletin de la Société Mathématique de France PY - 1969 SP - 369 EP - 380 VL - 97 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.1689/ DO - 10.24033/bsmf.1689 LA - en ID - BSMF_1969__97__369_0 ER -
%0 Journal Article %A Tamura, T. %T Commutative semigroups whose lattice of congruences is a chain %J Bulletin de la Société Mathématique de France %D 1969 %P 369-380 %V 97 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.1689/ %R 10.24033/bsmf.1689 %G en %F BSMF_1969__97__369_0
Tamura, T. Commutative semigroups whose lattice of congruences is a chain. Bulletin de la Société Mathématique de France, Tome 97 (1969), pp. 369-380. doi : 10.24033/bsmf.1689. https://www.numdam.org/articles/10.24033/bsmf.1689/
[1] Naturally totally ordered commutative semigroups, Amer. J. Math., t. 76, 1954, p. 631-646. | MR | Zbl
. -[2] The algebraic theory of semigroups, vol. 1. - Providence, American mathematical Society, 1961 (Mathematical Surveys, 7). | MR | Zbl
and . -[3] Abelian groups. - Budapest, Publishing House of Hungarian Academy of Science, 1958. | MR | Zbl
. -[4] Group theory. - Princeton (New Jersey), D. Van Nostrand, 1965. | MR | Zbl
. -[5] Semigroups with certain types of sub-semigroup lattices, Soviet Math. Dokl., t. 2, 1961, p. 737-740. | Zbl
. -[6] Note on unipotent inversible semigroups, Kodai math. Sem. Rep., t. 3, 1954, p. 93-95. | MR | Zbl
. -[7] On decomposition of a commutative semigroup, Kodai math. Sem. Rep., t. 4, 1954, p. 109-112. | MR | Zbl
and . -[8] On a monoid whose submonoids form a chain, J. Gakugei, Tokushima Univ., t. 5, 1954, p. 8-16. | MR | Zbl
. -[9] Existence of greatest decomposition of a semigroup, Kodai math. Sem. Rep., t. 7, 1955, p. 83-84. | MR | Zbl
and . -[10] Indecomposable completely simple semigroups except groups, Osaka math. J., t. 8, 1956, p. 35-42. | MR | Zbl
. -[11] The theory of construction of finite semigroups, I, Osaka math. J., t. 8, 1956, p. 243-261. | MR | Zbl
. -[12] Commutative nonpotent archimedean semigroup with cancellation law, I, J. Gakugei, Tokushima Univ., t. 8, 1957, p. 5-11. | MR | Zbl
. -[13] Another proof of a theorem concerning the greatest semilattice-decomposition of a semigroup, Proc. Jap. Acad., t. 40, 1964, p. 777-780. | MR | Zbl
. -[14] Notes on commutative archimedean semigroups, I, Proc. Japan Acad., t. 42, 1966, p. 35-40. | MR | Zbl
. -[15] Decomposability of extension and its application to finite semigroups, Proc. Japan Acad., t. 43, 1967, p. 93-97. | MR | Zbl
. -[16] Construction of trees and commutative archimedean semigroups, Math. Nachrichten, Band 36, 1968, p. 255-287. | MR | Zbl
. -[17] H-commutative semigroups in which each homomorphism is uniquely determined by its kernel, Pacific J. of Math. (to be published). | Zbl
. -- On congruence lattices of nilsemigroups, Semigroup Forum, Volume 95 (2017) no. 2, p. 314 | DOI:10.1007/s00233-016-9837-2
- On Commutative Δ-Semigroups, Advances in Pure Mathematics, Volume 06 (2016) no. 05, p. 309 | DOI:10.4236/apm.2016.65021
- Classification of Finite Commutative Semigroups for Which the Inverse Monoid of Local Automorphisms is a ∆-Semigroup, Ukrainian Mathematical Journal, Volume 67 (2015) no. 7, p. 981 | DOI:10.1007/s11253-015-1130-0
- Characterization of the semilattice of idempotents of a finite-rank permutable inverse semigroup with zero, Ukrainian Mathematical Journal, Volume 59 (2007) no. 10, p. 1517 | DOI:10.1007/s11253-008-0011-1
- On RDGCn-commutative permutable semigroups, Periodica Mathematica Hungarica, Volume 49 (2004) no. 2, p. 91 | DOI:10.1007/s10998-004-0524-9
- LC-commutative permutable semigroups, Semigroup Forum, Volume 52 (1996) no. 1, p. 191 | DOI:10.1007/bf02574095
- RC-commutative Δ-semigroups, Semigroup Forum, Volume 44 (1992) no. 1, p. 332 | DOI:10.1007/bf02574352
- On the structure of (m, n)-commutative semigroups, Semigroup Forum, Volume 45 (1992) no. 1, p. 183 | DOI:10.1007/bf03025759
- Weakly exponential Δ-semigroups, Semigroup Forum, Volume 40 (1990) no. 1, p. 297 | DOI:10.1007/bf02573275
- Permutable duo semigroups, Semigroup Forum, Volume 28 (1984) no. 1, p. 155 | DOI:10.1007/bf02572482
- Weakly exponential semigroups, Semigroup Forum, Volume 28 (1984) no. 1, p. 291 | DOI:10.1007/bf02572490
- Semigroups and their lattice of congruences, Semigroup Forum, Volume 26 (1983) no. 1, p. 1 | DOI:10.1007/bf02572819
- Inverse semigroups whose full inverse subsemigroups form a chain, Glasgow Mathematical Journal, Volume 22 (1981) no. 2, p. 159 | DOI:10.1017/s0017089500004626
- Pseudosimple commutative semigroups, Monatshefte f�r Mathematik, Volume 91 (1981) no. 1, p. 77 | DOI:10.1007/bf01306958
- Left chain semigroups, Semigroup Forum, Volume 22 (1981) no. 1, p. 1 | DOI:10.1007/bf02572781
- SEMIGROUPS WHOSE CONGRUENCES FORM A CHAIN AND WHICH ARE EXTENSIONS OF CONGRUENCE–FREE SEMIGROUPS, Semigroups (1980), p. 85 | DOI:10.1016/b978-0-12-319450-3.50012-8
- Exponential Δ-semigroups, Semigroup Forum, Volume 12 (1976) no. 1, p. 313 | DOI:10.1007/bf02195938
- Permutability of congruences on commutative semigroups, Semigroup Forum, Volume 10 (1975) no. 1, p. 55 | DOI:10.1007/bf02194872
Cité par 18 documents. Sources : Crossref