Riemann-Roch for general algebraic varieties
Bulletin de la Société Mathématique de France, Tome 111 (1983), pp. 287-300.
@article{BSMF_1983__111__287_0,
     author = {Fulton, William and Gillet, Henri},
     title = {Riemann-Roch for general algebraic varieties},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {287--300},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {111},
     year = {1983},
     doi = {10.24033/bsmf.1989},
     mrnumber = {85h:14010},
     zbl = {0579.14013},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.1989/}
}
TY  - JOUR
AU  - Fulton, William
AU  - Gillet, Henri
TI  - Riemann-Roch for general algebraic varieties
JO  - Bulletin de la Société Mathématique de France
PY  - 1983
SP  - 287
EP  - 300
VL  - 111
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.1989/
DO  - 10.24033/bsmf.1989
LA  - en
ID  - BSMF_1983__111__287_0
ER  - 
%0 Journal Article
%A Fulton, William
%A Gillet, Henri
%T Riemann-Roch for general algebraic varieties
%J Bulletin de la Société Mathématique de France
%D 1983
%P 287-300
%V 111
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.1989/
%R 10.24033/bsmf.1989
%G en
%F BSMF_1983__111__287_0
Fulton, William; Gillet, Henri. Riemann-Roch for general algebraic varieties. Bulletin de la Société Mathématique de France, Tome 111 (1983), pp. 287-300. doi : 10.24033/bsmf.1989. https://www.numdam.org/articles/10.24033/bsmf.1989/

[1] Baum (P.), Fulton (W.) and Macpherson (R.). - Riemann-Roch for singular varieties, Publ. Math. I.H.E.S., No. 45, 1975, pp. 101-167. | EuDML | Numdam | MR | Zbl

[2] Baum (P.), Fulton (W.) and Macpherson (R.). - Riemann-Roch and topological K-theory for singular varieties, Acta math., Vol. 143, 1979, pp. 155-192. | MR | Zbl

[3] Berthelot (P.), Grothendieck (A.), Illusie (L.) et al. Theorie des intersections et théorème de Riemann-Roch, Springer LN, Vol. 225, 1971. | MR | Zbl

[4] Borel (A.) and Serre (J.-P.). - Le théorème de Riemann-Roch, d'après A. Grothendieck, Bull. Soc. math. France, T. 86, 1958, pp. 97-136. | EuDML | Numdam | MR | Zbl

[5] Fulton (W.). - A Hirzebruch-Riemann-Roch formula for analytic spaces and non-projective algebraic varieties, Compositio Math., Vol. 34, 1977, pp. 279-283. | Numdam | MR | Zbl

[6] Fulton (W.). - Intersection Theory (to appear).

[7] Fulton (W.) and Macpherson (R.). - Categorical framework for the study of singular spaces, Memoirs A.M.S., Vol. 243, 1981. | MR | Zbl

[8] Gillet (H.). - Riemann-Roch theorems for higher algebraic K-theory, Advances in Math., Vol. 40, 1981, pp. 203-289. | MR | Zbl

[9] Gillet (H.), Comparison of K-theory spectral sequences, with applications in Algebraic K-Theory, Evanston, 1980, Springer LN 854, 1981, pp. 141-167. | MR | Zbl

[10] Grothendieck (A.) with Dieudonné (J.). - Éléments de Géométrie algébrique II, Publ. Math. I.H.E.S., No. 8, 1961. | Numdam | Zbl

[11] O'Brian (N. R.), Toledo (T.) and Tong (Y. L.). - Grothendieck-Riemann-Roch for complex manifolds, Bull. A.M.S., Vol. 5, 1981, pp. 182-184. | MR | Zbl

[12] Quillen (D.). - Higher algebraic K-theory I, Springer LN 341, 1973, pp. 85-147. | MR | Zbl

[13] Verdier (J.-L.). - Le théorème de Riemann-Roch pour les intersections complètes, Astérisque, Vol. 36-37, 1976, pp. 189-228. | Numdam | Zbl

  • Anderson, Dave; Gonzales, Richard; Payne, Sam Equivariant Grothendieck–Riemann–Roch and localization in operational K-theory, Algebra Number Theory, Volume 15 (2021) no. 2, p. 341 | DOI:10.2140/ant.2021.15.341
  • Erdenberger, C.; Grushevsky, S.; Hulek, K. Some intersection numbers of divisors on toroidal compactifications of 𝒜_ℊ, Journal of Algebraic Geometry, Volume 19 (2009) no. 1, p. 99 | DOI:10.1090/s1056-3911-09-00512-8
  • Edidin, Dan; Graham, William Algebraic cycles and completions of equivariant K-theory, Duke Mathematical Journal, Volume 144 (2008) no. 3 | DOI:10.1215/00127094-2008-042
  • Takeda, Yuichiro Lefschetz-Riemann-Roch theorem for smooth algebraic schemes, Mathematische Zeitschrift, Volume 211 (1992) no. 1, p. 643 | DOI:10.1007/bf02571452
  • Gainza, P. Pascual Descente cubique pour la K-theorie des faisceaux coherents et l'homologie de Chow, Hyperrésolutions cubiques et descente cohomologique, Volume 1335 (1988), p. 161 | DOI:10.1007/bfb0085060
  • Pedrini, Claudio Cicli algebrici sulle varieta’ singolari, Rendiconti del Seminario Matematico e Fisico di Milano, Volume 57 (1987) no. 1, p. 215 | DOI:10.1007/bf02925052

Cité par 6 documents. Sources : Crossref