Subelliptic variational problems
Bulletin de la Société Mathématique de France, Volume 118 (1990) no. 2, pp. 147-169.
@article{BSMF_1990__118_2_147_0,
     author = {Xu, Chao-Jiang},
     title = {Subelliptic variational problems},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {147--169},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {118},
     number = {2},
     year = {1990},
     doi = {10.24033/bsmf.2141},
     zbl = {0717.49004},
     mrnumber = {92b:49008},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/bsmf.2141/}
}
TY  - JOUR
AU  - Xu, Chao-Jiang
TI  - Subelliptic variational problems
JO  - Bulletin de la Société Mathématique de France
PY  - 1990
DA  - 1990///
SP  - 147
EP  - 169
VL  - 118
IS  - 2
PB  - Société mathématique de France
UR  - http://archive.numdam.org/articles/10.24033/bsmf.2141/
UR  - https://zbmath.org/?q=an%3A0717.49004
UR  - https://www.ams.org/mathscinet-getitem?mr=92b:49008
UR  - https://doi.org/10.24033/bsmf.2141
DO  - 10.24033/bsmf.2141
LA  - en
ID  - BSMF_1990__118_2_147_0
ER  - 
%0 Journal Article
%A Xu, Chao-Jiang
%T Subelliptic variational problems
%J Bulletin de la Société Mathématique de France
%D 1990
%P 147-169
%V 118
%N 2
%I Société mathématique de France
%U https://doi.org/10.24033/bsmf.2141
%R 10.24033/bsmf.2141
%G en
%F BSMF_1990__118_2_147_0
Xu, Chao-Jiang. Subelliptic variational problems. Bulletin de la Société Mathématique de France, Volume 118 (1990) no. 2, pp. 147-169. doi : 10.24033/bsmf.2141. http://archive.numdam.org/articles/10.24033/bsmf.2141/

[1] Bony (J.M.). - Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier, t. 19, 1969, p. 227-304. | Numdam | MR | Zbl

[2] Derridj (M.). - Un problème aux limites pour une classe d'opérateurs du second ordre hypoelliptiques, Ann. Inst. Fourier, t. 21, 1971, p. 99-148. | Numdam | MR | Zbl

[3] Gilbarg (D.) and Trudinger (N.S.). - Elliptic partial differential equations of second order. - Springer-Verlag, 1983. | MR | Zbl

[4] Hörmander (L.). - Hypoelliptic second differential equations, Acta Math., t. 119, 1967, p. 147-171. | MR | Zbl

[5] Jerison (D.). - The Poincaré inequality for vector fields satisfying Hörmader's condition, Duke Math. J., t. 53, 1986, p. 503-523. | MR | Zbl

[6] Moser (J.). - On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math., t. 24, 1971, p. 727-740. | MR | Zbl

[7] Nagel (A.) and Stein (E.M.) and Wainger (S.). - Balls and metrics defined by vector fields I : basic properties, Acta Math., t. 155, 1985, p. 103-147. | MR | Zbl

[8] Oleinik (O.) and Radkevitch (E.). - Second order equations with a non-negative characteristic form. - Am. Math. Soc., New York, 1973.

[9] Rothschild (L.) and Stein (E.M.). - Hypoelliptic differential operators and nilpotent Lie groups, Acta Math., t. 137, 1977, p. 247-320. | MR | Zbl

[10] Xu (C.J.). - Régularité des solutions d'équations aux dérivées partielles associées à un système de champs de vecteurs, Ann. Inst. Fourier, t. 37, 1987, p. 105-113. | Numdam | MR | Zbl

[11] Xu (C.J.). - Regularity problems of extremal of subelliptic variational integral. - preprint.

[12] Giaquinta (M.). - Multiple integrals in the calculus of variations and nonlinear elliptic systems. - Princ. University Press, 1983. | MR | Zbl

[13] Ladyzenskaya (O.A.) and Ural'Ceva (N.N.). - Linear and quasi-linear elliptic equations. - Second russian edition, Nauka, Moscow, 1973.

[14] Stampacchia (G.). - Équations elliptiques du second ordre à coefficients discontinus. - Sém. de Math. Sup., Univ. de Montréal, 1965. | Zbl

Cited by Sources: