Facteurs -simples de J 0 (N) de grande dimension et de grand rang
Bulletin de la Société Mathématique de France, Volume 128 (2000) no. 2, pp. 219-248.
@article{BSMF_2000__128_2_219_0,
     author = {Royer, Emmanuel},
     title = {Facteurs $\mathbb {Q}$-simples de $J_{0}(N)$ de grande dimension et de grand rang},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {219--248},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {128},
     number = {2},
     year = {2000},
     doi = {10.24033/bsmf.2369},
     zbl = {0968.11027},
     mrnumber = {2001j:11041},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.24033/bsmf.2369/}
}
TY  - JOUR
AU  - Royer, Emmanuel
TI  - Facteurs $\mathbb {Q}$-simples de $J_{0}(N)$ de grande dimension et de grand rang
JO  - Bulletin de la Société Mathématique de France
PY  - 2000
DA  - 2000///
SP  - 219
EP  - 248
VL  - 128
IS  - 2
PB  - Société mathématique de France
UR  - http://archive.numdam.org/articles/10.24033/bsmf.2369/
UR  - https://zbmath.org/?q=an%3A0968.11027
UR  - https://www.ams.org/mathscinet-getitem?mr=2001j:11041
UR  - https://doi.org/10.24033/bsmf.2369
DO  - 10.24033/bsmf.2369
LA  - fr
ID  - BSMF_2000__128_2_219_0
ER  - 
%0 Journal Article
%A Royer, Emmanuel
%T Facteurs $\mathbb {Q}$-simples de $J_{0}(N)$ de grande dimension et de grand rang
%J Bulletin de la Société Mathématique de France
%D 2000
%P 219-248
%V 128
%N 2
%I Société mathématique de France
%U https://doi.org/10.24033/bsmf.2369
%R 10.24033/bsmf.2369
%G fr
%F BSMF_2000__128_2_219_0
Royer, Emmanuel. Facteurs $\mathbb {Q}$-simples de $J_{0}(N)$ de grande dimension et de grand rang. Bulletin de la Société Mathématique de France, Volume 128 (2000) no. 2, pp. 219-248. doi : 10.24033/bsmf.2369. http://archive.numdam.org/articles/10.24033/bsmf.2369/

[1] Brumer (A.). - The Rank of J0(N), Astérisque 228, 1995, p. 41-68. | MR | Zbl

[2] Conrey (J.), Duke (W.), Farmer (D.W.). - The distribution of the eigenvalues of Hecke operators, Acta Arithmetica, t. 78, 4, 1997, p. 405-409. | MR | Zbl

[3] Cornell (G.), Silverman (J.H.) (eds). - Modular Forms and Fermat's Last Theorem. - Springer-Verlag, Berlin Heidelberg New-York, 1997. | MR | Zbl

[4] Diamond (F.), Im (J.). - Modular forms and modular curves, in Fermat Last Theorem, Canadian Math. Soc., 1995, p. 39-133. | MR | Zbl

[5] Dubickas (A.), Konyagin (S.V.). - On the number of polynomials of bounded measure, Acta Arithmetica, t. 86, n° 4, 1998, p. 325-342. | MR | Zbl

[6] Gamburd (A.), Jakobson (D.), Sarnak (P.). - Spectra of elements in the group ring of SU(2), J. Europ. Math. Soc., t. 1, 1999, p. 1-35. | MR | Zbl

[7] Guo (J.). - On the positivity of the central critical values of automorphic L-functions for GL(2), Duke Math. J., t. 83, 1996, p. 157-190. | MR | Zbl

[8] Gross (B.H.), Zagier (D.B.). - Heegner points and derivatives L-series, Inventiones Math., t. 84, 1986, p. 225-320. | MR | Zbl

[9] Iwaniec (H.), Sarnak (P.). - The non-vanishing of central values of automorphic L-functions and Landau-Siegel zeros, Preprint, 1997.

[10] Iwaniec (H.). - Topics in Classical Automorphic Forms, Graduate Studies in Math., vol. 17, Amer. Math. Soc., 1997. | MR | Zbl

[11] Kowalski (E.), Michel (P.). - A lower bound for the rank of J0(q), Prépublication, Université Paris-Sud, t. 97, n° 69, 1997.

[12] Kowalski (E.), Michel (P.). - Sur les zéros des fonctions L de formes automorphes, Prépublication, Université Paris-Sud, t. 97, n° 54, 1997.

[13] Kowalski (E.), Michel (P.). - The analytic rank of J0(q) and zeros of automorphic L-functions, Duke Math. J., à paraître. | Zbl

[14] Kohnen (W.). - Fourier Coefficients of Modular Forms of Half-Integral Weight, Math. Annalen, t. 271, n° 2, 1985, p. 237-268. | MR | Zbl

[15] Kowalski (E.). - The rank of the jacobians of modular curves: analytic methods, Thesis, Rutgers University, disponible sur http://www.princeton.edu/˜ekowalsk/These/these.html, 1998.

[16] Rivlin (T.J.). - Chebyshev Polynomials: from Approximation Theory to Algebra and Number Theory, 2e éd. - Pure and Applied Mathematics, Wiley-Interscience, New York, 1990. | Zbl

[17] Rohrlich (D.E.). - Non vanishing of L-functions for GL(2), Inventiones Math., t. 97, 1989, p. 381-403. | MR | Zbl

[18] Rohrlich (D.E.). - Modular Curves, Hecke Correspondences, and L-functions, in Cornell and Silvermann [3], chap. 3, 1997, p. 41-100. | MR | Zbl

[19] Serre (J.-P.). - Répartition asymptotique des valeurs propres de l'opérateur de Hecke Tp, J. Amer. Math. Soc., t. 10, n° 1, 1997, p. 75-102. | MR | Zbl

[20] Tenenbaum (G.). - Introduction à la théorie analytique et probabiliste des nombres. - Cours spécialisés, vol. 1, Soc. Math. France, 1995. | MR | Zbl

Cited by Sources: