[Décomposition Littlewood-Paley des variétés à bouts]
Pour certaines variétés riemanniennes à bouts, satisfaisant ou non la condition de doublement de volume des boules géodésiques, nous obtenons des décompositions de Littlewood-Paley sur des espaces
For certain non compact Riemannian manifolds with ends which may or may not satisfy the doubling condition on the volume of geodesic balls, we obtain Littlewood-Paley type estimates on (weighted)
Keywords: Littlewood-Paley decomposition, square function, manifolds with ends, semiclassical analysis
Mot clés : décomposition de Littlewood-Paley, fonction carrée, variétés à bouts, analyse semi-classique
@article{BSMF_2010__138_1_1_0, author = {Bouclet, Jean-Marc}, title = {Littlewood-Paley decompositions on manifolds with ends}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {1--37}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {138}, number = {1}, year = {2010}, doi = {10.24033/bsmf.2584}, mrnumber = {2638890}, zbl = {1198.42013}, language = {en}, url = {https://www.numdam.org/articles/10.24033/bsmf.2584/} }
TY - JOUR AU - Bouclet, Jean-Marc TI - Littlewood-Paley decompositions on manifolds with ends JO - Bulletin de la Société Mathématique de France PY - 2010 SP - 1 EP - 37 VL - 138 IS - 1 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2584/ DO - 10.24033/bsmf.2584 LA - en ID - BSMF_2010__138_1_1_0 ER -
%0 Journal Article %A Bouclet, Jean-Marc %T Littlewood-Paley decompositions on manifolds with ends %J Bulletin de la Société Mathématique de France %D 2010 %P 1-37 %V 138 %N 1 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2584/ %R 10.24033/bsmf.2584 %G en %F BSMF_2010__138_1_1_0
Bouclet, Jean-Marc. Littlewood-Paley decompositions on manifolds with ends. Bulletin de la Société Mathématique de France, Tome 138 (2010) no. 1, pp. 1-37. doi : 10.24033/bsmf.2584. https://www.numdam.org/articles/10.24033/bsmf.2584/
[1] « Semi-classical functional calculus on manifolds with ends and weighted
[2] -, « Strichartz estimates on asymptotically hyperbolic manifolds », to appear in Analysis & PDE. | Zbl
[3] « Strichartz estimates for long range perturbations », Amer. J. Math. 129 (2007), p. 1565-1609. | MR | Zbl
& -[4] -, « On global Strichartz estimates for non-trapping metrics », J. Funct. Anal. 254 (2008), p. 1661-1682. | MR | Zbl
[5] « Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds », Amer. J. Math. 126 (2004), p. 569-605. | MR | Zbl
, & -
[6] « Littlewood-Paley-Stein functions on complete Riemannian manifolds for
[7] « A geometric approach to the Littlewood-Paley theory », Geom. Funct. Anal. 16 (2006), p. 126-163. | MR | Zbl
& -[8] « Estimation des fonctions de Littlewood-Paley-Stein sur les variétés riemanniennes à courbure non positive », Ann. Sci. École Norm. Sup. 20 (1987), p. 505-544. | Numdam | MR | Zbl
-[9] « Harmonic analysis related to Schrödinger operators », in Radon transforms, geometry, and wavelets, Contemp. Math., vol. 464, Amer. Math. Soc., 2008, p. 213-230. | MR | Zbl
& -[10] « A remark on Littlewood-Paley theory for the distorted Fourier transform », Proc. Amer. Math. Soc. 135 (2007), p. 437-451 (electronic). | MR | Zbl
-[11] -, « Lecture notes on harmonic analysis », http://www.math.uchicago.edu/~schlag/book.pdf.
[12] Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, vol. 105, Cambridge Univ. Press, 1993. | MR | Zbl
-[13] Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton Univ. Press, 1970. | MR | Zbl
-
[14] «
[15] -, Partial differential equations. III, Applied Mathematical Sciences, vol. 117, Springer, 1997. | Zbl
- Vertical and horizontal square functions on a class of non-doubling manifolds, Journal of Differential Equations, Volume 358 (2023), p. 41 | DOI:10.1016/j.jde.2023.02.005
- Uniqueness of martingale solutions for the stochastic nonlinear Schrödinger equation on 3d compact manifolds, Stochastics and Partial Differential Equations: Analysis and Computations, Volume 10 (2022) no. 3, p. 828 | DOI:10.1007/s40072-022-00238-w
- Boundedness of the Discrete Square Function on Nondoubling Parabolic Manifolds with Ends, Taiwanese Journal of Mathematics, Volume 25 (2021) no. 2 | DOI:10.11650/tjm/201001
- Littlewood-Paley Inequalities on Manifolds with Ends, Potential Analysis, Volume 53 (2020) no. 2, p. 613 | DOI:10.1007/s11118-019-09780-0
- Strichartz estimates and Strauss conjecture on non-trapping asymptotically hyperbolic manifolds, Transactions of the American Mathematical Society, Volume 373 (2020) no. 11, p. 7639 | DOI:10.1090/tran/8210
- Dynamics of the nonlinear Klein–Gordon equation in the nonrelativistic limit, Annali di Matematica Pura ed Applicata (1923 -), Volume 198 (2019) no. 3, p. 903 | DOI:10.1007/s10231-018-0805-1
- Global-in-time Strichartz estimates for Schrödinger on scattering manifolds, Communications in Partial Differential Equations, Volume 42 (2017) no. 12, p. 1962 | DOI:10.1080/03605302.2017.1399907
- Global-in-time Strichartz estimates on nontrapping, asymptotically conic manifolds, Analysis PDE, Volume 9 (2016) no. 1, p. 151 | DOI:10.2140/apde.2016.9.151
- Paley-Littlewood decomposition for sectorial operators and interpolation spaces, Mathematische Nachrichten, Volume 289 (2016) no. 11-12, p. 1488 | DOI:10.1002/mana.201400223
- Strichartz estimates and nonlinear wave equation on nontrapping asymptotically conic manifolds, Advances in Mathematics, Volume 271 (2015), p. 91 | DOI:10.1016/j.aim.2014.11.013
- Strichartz Inequalities on Surfaces with Cusps, International Mathematics Research Notices, Volume 2015 (2015) no. 24, p. 13437 | DOI:10.1093/imrn/rnv105
- Strichartz estimates for the Schrödinger equation for the sublaplacian on complex spheres, Transactions of the American Mathematical Society, Volume 367 (2014) no. 4, p. 2631 | DOI:10.1090/s0002-9947-2014-06162-x
- Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials, Analysis PDE, Volume 6 (2013) no. 8, p. 1857 | DOI:10.2140/apde.2013.6.1857
- Strichartz Estimates for Schrödinger Equations on Scattering Manifolds, Communications in Partial Differential Equations, Volume 37 (2012) no. 2, p. 169 | DOI:10.1080/03605302.2011.593017
- Strichartz estimates on asymptotically hyperbolic manifolds, Analysis PDE, Volume 4 (2011) no. 1, p. 1 | DOI:10.2140/apde.2011.4.1
- Strichartz Estimates Without Loss on Manifolds with Hyperbolic Trapped Geodesics, Geometric and Functional Analysis, Volume 20 (2010) no. 3, p. 627 | DOI:10.1007/s00039-010-0076-5
Cité par 16 documents. Sources : Crossref