Littlewood-Paley decompositions on manifolds with ends
[Décomposition Littlewood-Paley des variétés à bouts]
Bulletin de la Société Mathématique de France, Tome 138 (2010) no. 1, pp. 1-37.

Pour certaines variétés riemanniennes à bouts, satisfaisant ou non la condition de doublement de volume des boules géodésiques, nous obtenons des décompositions de Littlewood-Paley sur des espaces Lp (à poids), en utilisant la fonction carrée usuelle définie via une partition dyadique.

For certain non compact Riemannian manifolds with ends which may or may not satisfy the doubling condition on the volume of geodesic balls, we obtain Littlewood-Paley type estimates on (weighted) Lp spaces, using the usual square function defined by a dyadic partition.

DOI : 10.24033/bsmf.2584
Classification : 42B20, 42B25, 58J40
Keywords: Littlewood-Paley decomposition, square function, manifolds with ends, semiclassical analysis
Mot clés : décomposition de Littlewood-Paley, fonction carrée, variétés à bouts, analyse semi-classique
@article{BSMF_2010__138_1_1_0,
     author = {Bouclet, Jean-Marc},
     title = {Littlewood-Paley decompositions on manifolds with ends},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {1--37},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {138},
     number = {1},
     year = {2010},
     doi = {10.24033/bsmf.2584},
     mrnumber = {2638890},
     zbl = {1198.42013},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2584/}
}
TY  - JOUR
AU  - Bouclet, Jean-Marc
TI  - Littlewood-Paley decompositions on manifolds with ends
JO  - Bulletin de la Société Mathématique de France
PY  - 2010
SP  - 1
EP  - 37
VL  - 138
IS  - 1
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2584/
DO  - 10.24033/bsmf.2584
LA  - en
ID  - BSMF_2010__138_1_1_0
ER  - 
%0 Journal Article
%A Bouclet, Jean-Marc
%T Littlewood-Paley decompositions on manifolds with ends
%J Bulletin de la Société Mathématique de France
%D 2010
%P 1-37
%V 138
%N 1
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2584/
%R 10.24033/bsmf.2584
%G en
%F BSMF_2010__138_1_1_0
Bouclet, Jean-Marc. Littlewood-Paley decompositions on manifolds with ends. Bulletin de la Société Mathématique de France, Tome 138 (2010) no. 1, pp. 1-37. doi : 10.24033/bsmf.2584. https://www.numdam.org/articles/10.24033/bsmf.2584/

[1] J.-M. Bouclet - « Semi-classical functional calculus on manifolds with ends and weighted Lp estimates », to appear in Ann. Inst. Fourier. | Numdam | MR | Zbl

[2] -, « Strichartz estimates on asymptotically hyperbolic manifolds », to appear in Analysis & PDE. | Zbl

[3] J.-M. Bouclet & N. Tzvetkov - « Strichartz estimates for long range perturbations », Amer. J. Math. 129 (2007), p. 1565-1609. | MR | Zbl

[4] -, « On global Strichartz estimates for non-trapping metrics », J. Funct. Anal. 254 (2008), p. 1661-1682. | MR | Zbl

[5] N. Burq, P. Gérard & N. Tzvetkov - « Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds », Amer. J. Math. 126 (2004), p. 569-605. | MR | Zbl

[6] T. Coulhon, X. T. Duong & X. D. Li - « Littlewood-Paley-Stein functions on complete Riemannian manifolds for 1p2 », Studia Math. 154 (2003), p. 37-57. | MR | Zbl

[7] S. Klainerman & I. Rodnianski - « A geometric approach to the Littlewood-Paley theory », Geom. Funct. Anal. 16 (2006), p. 126-163. | MR | Zbl

[8] N. Lohoué - « Estimation des fonctions de Littlewood-Paley-Stein sur les variétés riemanniennes à courbure non positive », Ann. Sci. École Norm. Sup. 20 (1987), p. 505-544. | Numdam | MR | Zbl

[9] G. Olafsson & S. Zheng - « Harmonic analysis related to Schrödinger operators », in Radon transforms, geometry, and wavelets, Contemp. Math., vol. 464, Amer. Math. Soc., 2008, p. 213-230. | MR | Zbl

[10] W. Schlag - « A remark on Littlewood-Paley theory for the distorted Fourier transform », Proc. Amer. Math. Soc. 135 (2007), p. 437-451 (electronic). | MR | Zbl

[11] -, « Lecture notes on harmonic analysis », http://www.math.uchicago.edu/~schlag/book.pdf.

[12] C. D. Sogge - Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, vol. 105, Cambridge Univ. Press, 1993. | MR | Zbl

[13] E. M. Stein - Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton Univ. Press, 1970. | MR | Zbl

[14] M. E. Taylor - « Lp-estimates on functions of the Laplace operator », Duke Math. J. 58 (1989), p. 773-793. | MR | Zbl

[15] -, Partial differential equations. III, Applied Mathematical Sciences, vol. 117, Springer, 1997. | Zbl

  • Bailey, Julian; Sikora, Adam Vertical and horizontal square functions on a class of non-doubling manifolds, Journal of Differential Equations, Volume 358 (2023), p. 41 | DOI:10.1016/j.jde.2023.02.005
  • Brzeźniak, Zdzisław; Hornung, Fabian; Weis, Lutz Uniqueness of martingale solutions for the stochastic nonlinear Schrödinger equation on 3d compact manifolds, Stochastics and Partial Differential Equations: Analysis and Computations, Volume 10 (2022) no. 3, p. 828 | DOI:10.1007/s40072-022-00238-w
  • Doan, Hong Chuong Boundedness of the Discrete Square Function on Nondoubling Parabolic Manifolds with Ends, Taiwanese Journal of Mathematics, Volume 25 (2021) no. 2 | DOI:10.11650/tjm/201001
  • Bui, The Anh Littlewood-Paley Inequalities on Manifolds with Ends, Potential Analysis, Volume 53 (2020) no. 2, p. 613 | DOI:10.1007/s11118-019-09780-0
  • Sire, Yannick; Sogge, Christopher; Wang, Chengbo; Zhang, Junyong Strichartz estimates and Strauss conjecture on non-trapping asymptotically hyperbolic manifolds, Transactions of the American Mathematical Society, Volume 373 (2020) no. 11, p. 7639 | DOI:10.1090/tran/8210
  • Pasquali, S. Dynamics of the nonlinear Klein–Gordon equation in the nonrelativistic limit, Annali di Matematica Pura ed Applicata (1923 -), Volume 198 (2019) no. 3, p. 903 | DOI:10.1007/s10231-018-0805-1
  • Zhang, Junyong; Zheng, Jiqiang Global-in-time Strichartz estimates for Schrödinger on scattering manifolds, Communications in Partial Differential Equations, Volume 42 (2017) no. 12, p. 1962 | DOI:10.1080/03605302.2017.1399907
  • Hassell, Andrew; Zhang, Junyong Global-in-time Strichartz estimates on nontrapping, asymptotically conic manifolds, Analysis PDE, Volume 9 (2016) no. 1, p. 151 | DOI:10.2140/apde.2016.9.151
  • Kriegler, Christoph; Weis, Lutz Paley-Littlewood decomposition for sectorial operators and interpolation spaces, Mathematische Nachrichten, Volume 289 (2016) no. 11-12, p. 1488 | DOI:10.1002/mana.201400223
  • Zhang, Junyong Strichartz estimates and nonlinear wave equation on nontrapping asymptotically conic manifolds, Advances in Mathematics, Volume 271 (2015), p. 91 | DOI:10.1016/j.aim.2014.11.013
  • Bouclet, Jean-Marc Strichartz Inequalities on Surfaces with Cusps, International Mathematics Research Notices, Volume 2015 (2015) no. 24, p. 13437 | DOI:10.1093/imrn/rnv105
  • Casarino, Valentina; Peloso, Marco Strichartz estimates for the Schrödinger equation for the sublaplacian on complex spheres, Transactions of the American Mathematical Society, Volume 367 (2014) no. 4, p. 2631 | DOI:10.1090/s0002-9947-2014-06162-x
  • Mizutani, Haruya Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials, Analysis PDE, Volume 6 (2013) no. 8, p. 1857 | DOI:10.2140/apde.2013.6.1857
  • Mizutani, Haruya Strichartz Estimates for Schrödinger Equations on Scattering Manifolds, Communications in Partial Differential Equations, Volume 37 (2012) no. 2, p. 169 | DOI:10.1080/03605302.2011.593017
  • Bouclet, Jean-Marc Strichartz estimates on asymptotically hyperbolic manifolds, Analysis PDE, Volume 4 (2011) no. 1, p. 1 | DOI:10.2140/apde.2011.4.1
  • Burq, Nicolas; Guillarmou, Colin; Hassell, Andrew Strichartz Estimates Without Loss on Manifolds with Hyperbolic Trapped Geodesics, Geometric and Functional Analysis, Volume 20 (2010) no. 3, p. 627 | DOI:10.1007/s00039-010-0076-5

Cité par 16 documents. Sources : Crossref