We study the singularities of the irreducible components of the Springer fiber over a nilpotent element with in a Lie algebra of type or (the so-called two columns case). We use Frobenius splitting techniques to prove that these irreducible components are normal, Cohen-Macaulay, and have rational singularities.
Keywords: Springer fiber, Frobenius splitting, normality, rational resolution, rational singularities
@article{BSMF_2012__140_3_309_0, author = {Perrin, Nicolas and Smirnov, Evgeny}, title = {Springer fiber components in the two columns case for types $A$ and $D$ are normal}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {309--333}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {140}, number = {3}, year = {2012}, doi = {10.24033/bsmf.2629}, mrnumber = {3059118}, zbl = {1268.14006}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/bsmf.2629/} }
TY - JOUR AU - Perrin, Nicolas AU - Smirnov, Evgeny TI - Springer fiber components in the two columns case for types $A$ and $D$ are normal JO - Bulletin de la Société Mathématique de France PY - 2012 SP - 309 EP - 333 VL - 140 IS - 3 PB - Société mathématique de France UR - http://archive.numdam.org/articles/10.24033/bsmf.2629/ DO - 10.24033/bsmf.2629 LA - en ID - BSMF_2012__140_3_309_0 ER -
%0 Journal Article %A Perrin, Nicolas %A Smirnov, Evgeny %T Springer fiber components in the two columns case for types $A$ and $D$ are normal %J Bulletin de la Société Mathématique de France %D 2012 %P 309-333 %V 140 %N 3 %I Société mathématique de France %U http://archive.numdam.org/articles/10.24033/bsmf.2629/ %R 10.24033/bsmf.2629 %G en %F BSMF_2012__140_3_309_0
Perrin, Nicolas; Smirnov, Evgeny. Springer fiber components in the two columns case for types $A$ and $D$ are normal. Bulletin de la Société Mathématique de France, Volume 140 (2012) no. 3, pp. 309-333. doi : 10.24033/bsmf.2629. http://archive.numdam.org/articles/10.24033/bsmf.2629/
[1] Groupes et algèbres de Lie, Hermann, 1954. | Zbl
-[2] Frobenius splitting methods in geometry and representation theory, Progress in Math., vol. 231, Birkhäuser, 2005. | MR | Zbl
& -[3] « Désingularisation des variétés de Schubert généralisées », Ann. Sci. École Norm. Sup. 7 (1974), p. 53-88. | Numdam | MR | Zbl
-[4] « Composantes singulières des fibres de Springer dans le cas deux-colonnes », C. R. Math. Acad. Sci. Paris 347 (2009), p. 631-636. | MR | Zbl
-[5] -, « Singular components of Springer fibers in the two-column case », Ann. Inst. Fourier (Grenoble) 59 (2009), p. 2429-2444. | Numdam | MR | Zbl
[6] « On the singularity of the irreducible components of a Springer fiber in », Selecta Math. (N.S.) 16 (2010), p. 393-418. | MR | Zbl
& -[7] Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge Univ. Press, 1997. | MR | Zbl
-[8] « On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory », Adv. Math. 178 (2003), p. 244-276. | MR | Zbl
-[9] Lie groups and Lie algebras, III, Encyclopaedia of Math. Sciences, vol. 41, Springer, 1994. | MR | Zbl
, & (éds.) -[10] « Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen », Invent. Math. 11 (1970), p. 263-292. | MR | Zbl
& -[11] « Frobenius splitting and geometry of -Schubert varieties », Adv. Math. 219 (2008), p. 1469-1512. | MR | Zbl
& -[12] -, « On Frobenius splitting of orbit closures of spherical subgroups in flag varieties », preprint arXiv:1006.5175. | Zbl
[13] Kac-Moody groups, their flag varieties and representation theory, Progress in Math., vol. 204, Birkhäuser, 2002. | MR | Zbl
-[14] « A Robinson-Schensted algorithm in the geometry of flags for classical groups », Thèse, Rijksuniversiteit Utrecht, 1989.
-[15] Classes unipotentes et sous-groupes de Borel, Lecture Notes in Math., vol. 946, Springer, 1982. | MR | Zbl
-[16] « 2-block Springer fibers: convolution algebras, coherent sheaves and embedded TQFT », preprint arXiv:0802.1943. | MR | Zbl
& -Cited by Sources: