We study the pullback maps on cohomology groups for equivariant rational maps (i.e., monomial maps) on toric varieties. Our method is based on the intersection theory on toric varieties. We use the method to determine the dynamical degrees of monomial maps and compute the degrees of the Cremona involution.
Keywords: dynamical degrees, topological entropy, monomial maps
@article{BSMF_2012__140_4_533_0, author = {Lin, Jan-Li}, title = {Pulling back cohomology classes and dynamical degrees of monomial maps}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {533--549}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {140}, number = {4}, year = {2012}, doi = {10.24033/bsmf.2635}, mrnumber = {3059849}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/bsmf.2635/} }
TY - JOUR AU - Lin, Jan-Li TI - Pulling back cohomology classes and dynamical degrees of monomial maps JO - Bulletin de la Société Mathématique de France PY - 2012 SP - 533 EP - 549 VL - 140 IS - 4 PB - Société mathématique de France UR - http://archive.numdam.org/articles/10.24033/bsmf.2635/ DO - 10.24033/bsmf.2635 LA - en ID - BSMF_2012__140_4_533_0 ER -
%0 Journal Article %A Lin, Jan-Li %T Pulling back cohomology classes and dynamical degrees of monomial maps %J Bulletin de la Société Mathématique de France %D 2012 %P 533-549 %V 140 %N 4 %I Société mathématique de France %U http://archive.numdam.org/articles/10.24033/bsmf.2635/ %R 10.24033/bsmf.2635 %G en %F BSMF_2012__140_4_533_0
Lin, Jan-Li. Pulling back cohomology classes and dynamical degrees of monomial maps. Bulletin de la Société Mathématique de France, Volume 140 (2012) no. 4, pp. 533-549. doi : 10.24033/bsmf.2635. http://archive.numdam.org/articles/10.24033/bsmf.2635/
[1] « On the complexity of some birational transformations », J. Phys. A 39 (2006), p. 3641-3654. | MR | Zbl
, & -[2] « On the degree growth of birational mappings in higher dimension », J. Geom. Anal. 14 (2004), p. 567-596. | MR | Zbl
& -[3] « Degree complexity of birational maps related to matrix inversion », Comm. Math. Phys. 298 (2010), p. 357-368. | MR | Zbl
& -[4] « The geometry of toric varieties », Russ. Math. Surv. 33 (1978), p. 97-154. | MR | Zbl
-[5] « Dynamics of bimeromorphic maps of surfaces », Amer. J. Math. 123 (2001), p. 1135-1169. | MR | Zbl
& -[6] « Comparison of dynamical degrees for semi-conjugate meromorphic maps », Comment. Math. Helv. 86 (2011), p. 817-840. | MR | Zbl
& -[7] « Une borne supérieure pour l'entropie topologique d'une application rationnelle », Ann. of Math. 161 (2005), p. 1637-1644. | MR | Zbl
& -[8] « Les applications monomiales en deux dimensions », Michigan Math. J. 51 (2003), p. 467-475. | MR | Zbl
-[9] « Dynamical compactifications of », Ann. of Math. 173 (2011), p. 211-248. | MR | Zbl
& -[10] « Degree growth of monomial maps and mcmullen's polytope algebra », preprint arXiv:1011.2854, to appear in Indiana Univ. Math. J. | MR | Zbl
& -[11] Introduction to toric varieties, Annals of Math. Studies, vol. 131, 1993. | MR | Zbl
-[12] -, Intersection theory, Springer, 1998.
[13] « Intersection theory on toric varieties », Topology 36 (1997), p. 335-353. | MR | Zbl
& -[14] « On characteristic classes of determinantal Cremona transformations », Math. Ann. 335 (2006), p. 479-487. | MR | Zbl
& -[15] « Propriétés ergodiques des applications rationnelles », Panoramas & Synthèses 30 (2010), p. 97-202. | MR
-[16] « Degree-growth of monomial maps », Ergodic Theory Dynam. Systems 27 (2007), p. 1375-1397. | MR | Zbl
& -[17] « Stabilization of monomial maps », Michigan Math. J. 60 (2011), p. 629-660. | MR | Zbl
& -[18] « Algebraic stability and degree growth of monomial maps », Math. Z. 271 (2012), p. 293-311. | MR | Zbl
-[19] « Algebraic degrees for iterates of meromorphic self-maps of », Publ. Mat. 50 (2006), p. 457-473. | EuDML | MR | Zbl
-[20] « A remark on dynamical degrees of automorphisms of hyperkähler manifolds », Manuscripta Math. 130 (2009), p. 101-111. | MR | Zbl
-[21] « Value distribution for sequences of rational mappings and complex dynamics », Indiana Univ. Math. J. 46 (1997), p. 897-932. | MR | Zbl
& -Cited by Sources: