Diophantine approximation on Veech surfaces
Bulletin de la Société Mathématique de France, Volume 140 (2012) no. 4, pp. 551-568.

We show that Y. Cheung’s general Z-continued fractions can be adapted to give approximation by saddle connection vectors for any compact translation surface. That is, we show the finiteness of his Minkowski constant for any compact translation surface. Furthermore, we show that for a Veech surface in standard form, each component of any saddle connection vector dominates its conjugates in an appropriate sense. The saddle connection continued fractions then allow one to recognize certain transcendental directions by their developments.

Nous montrons que les fractions continues generalisées Z de Y. Cheung s’adaptent pour exprimer l’approximation par vecteurs de connexion de selles sur n’importe quelle surface de translation compacte. C’est-à-dire, nous démontrons la finitude de la constant de Minkowski pour chaque surface de translation compacte. De plus, pour une surface de Veech en forme standard, nous montrons que chaque composant de n’importe quel vecteur de connexion de selle domine, dans un sens approprié, ses conjugués. Les fractions continues de connexions de selle permettent de reconnaître certaines directions transcendantales par leur développement.

DOI: 10.24033/bsmf.2636
Classification: 11J70, 11J81, 30F60
Keywords: translation surfaces, transcendence, diophantine approximation
Mot clés : surfaces de translation, transcendance, approximation diophantienne
@article{BSMF_2012__140_4_551_0,
     author = {Hubert, Pascal and Schmidt, Thomas A.},
     title = {Diophantine approximation on {Veech} surfaces},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {551--568},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {140},
     number = {4},
     year = {2012},
     doi = {10.24033/bsmf.2636},
     mrnumber = {3059850},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/bsmf.2636/}
}
TY  - JOUR
AU  - Hubert, Pascal
AU  - Schmidt, Thomas A.
TI  - Diophantine approximation on Veech surfaces
JO  - Bulletin de la Société Mathématique de France
PY  - 2012
SP  - 551
EP  - 568
VL  - 140
IS  - 4
PB  - Société mathématique de France
UR  - http://archive.numdam.org/articles/10.24033/bsmf.2636/
DO  - 10.24033/bsmf.2636
LA  - en
ID  - BSMF_2012__140_4_551_0
ER  - 
%0 Journal Article
%A Hubert, Pascal
%A Schmidt, Thomas A.
%T Diophantine approximation on Veech surfaces
%J Bulletin de la Société Mathématique de France
%D 2012
%P 551-568
%V 140
%N 4
%I Société mathématique de France
%U http://archive.numdam.org/articles/10.24033/bsmf.2636/
%R 10.24033/bsmf.2636
%G en
%F BSMF_2012__140_4_551_0
Hubert, Pascal; Schmidt, Thomas A. Diophantine approximation on Veech surfaces. Bulletin de la Société Mathématique de France, Volume 140 (2012) no. 4, pp. 551-568. doi : 10.24033/bsmf.2636. http://archive.numdam.org/articles/10.24033/bsmf.2636/

[1] P. Arnoux & P. Hubert - « Fractions continues sur les surfaces de Veech », J. Anal. Math. 81 (2000), p. 35-64. | MR | Zbl

[2] P. Arnoux & T. A. Schmidt - « Veech surfaces with nonperiodic directions in the trace field », J. Mod. Dyn. 3 (2009), p. 611-629. | MR | Zbl

[3] K. Ball - « An elementary introduction to modern convex geometry », in Flavors of geometry, Math. Sci. Res. Inst. Publ., vol. 31, Cambridge Univ. Press, 1997, p. 1-58. | MR | Zbl

[4] Y. Bugeaud - Approximation by algebraic numbers, Cambridge Tracts in Mathematics, vol. 160, Cambridge Univ. Press, 2004. | MR | Zbl

[5] Y. Bugeaud, P. Hubert & T. A. Schmidt - « Transcendence with Rosen continued fractions », to appear in J. European Math. Soc. | MR

[6] K. Calta & J. Smillie - « Algebraically periodic translation surfaces », J. Mod. Dyn. 2 (2008), p. 209-248. | MR | Zbl

[7] Y. Cheung - « Hausdorff dimension of the set of singular pairs », Ann. of Math. 173 (2011), p. 127-167. | MR | Zbl

[8] Y. Cheung, P. Hubert & H. Masur - « Dichotomy for the Hausdorff dimension of the set of nonergodic directions », Invent. Math. 183 (2011), p. 337-383. | MR | Zbl

[9] P. Cohen & J. Wolfart - « Modular embeddings for some nonarithmetic Fuchsian groups », Acta Arith. 56 (1990), p. 93-110. | MR | Zbl

[10] A. Eskin, H. Masur & A. Zorich - « Moduli spaces of abelian differentials: the principal boundary, counting problems, and the Siegel-Veech constants », Publ. Math. I.H.É.S. 97 (2003), p. 61-179. | Numdam | MR | Zbl

[11] E. Gutkin & C. Judge - « Affine mappings of translation surfaces: geometry and arithmetic », Duke Math. J. 103 (2000), p. 191-213. | MR | Zbl

[12] P. Hubert & E. Lanneau - « Veech groups without parabolic elements », Duke Math. J. 133 (2006), p. 335-346. | MR | Zbl

[13] R. Kenyon & J. Smillie - « Billiards on rational-angled triangles », Comment. Math. Helv. 75 (2000), p. 65-108. | MR | Zbl

[14] E. Lanneau - « Infinite sequence of fixed point free pseudo-Anosov homeomorphisms on a family of genus two surface », Contemporary Mathematics 532 (2010), p. 231-242. | MR | Zbl

[15] W. J. Leveque - Topics in number theory. Vols. 1 and 2, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1956. | MR | Zbl

[16] C. Maclachlan & A. W. Reid - The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Math., vol. 219, Springer, 2003. | MR | Zbl

[17] S. Marmi, P. Moussa & J.-C. Yoccoz - « The cohomological equation for Roth-type interval exchange maps », J. Amer. Math. Soc. 18 (2005), p. 823-872. | MR | Zbl

[18] H. Masur & S. Tabachnikov - « Rational billiards and flat structures », in Handbook of dynamical systems, Vol. 1A, North-Holland, 2002, p. 1015-1089. | MR | Zbl

[19] C. T. Mcmullen - « Billiards and Teichmüller curves on Hilbert modular surfaces », J. Amer. Math. Soc. 16 (2003), p. 857-885. | MR | Zbl

[20] M. Möller - « Variations of Hodge structures of a Teichmüller curve », J. Amer. Math. Soc. 19 (2006), p. 327-344. | MR | Zbl

[21] D. Rosen - « A class of continued fractions associated with certain properly discontinuous groups », Duke Math. J. 21 (1954), p. 549-563. | MR | Zbl

[22] K. F. Roth - « Rational approximations to algebraic numbers », Mathematika 2 (1955), p. 1-20; corrigendum, 168. | MR | Zbl

[23] P. Schmutz Schaller & J. Wolfart - « Semi-arithmetic Fuchsian groups and modular embeddings », J. London Math. Soc. 61 (2000), p. 13-24. | MR | Zbl

[24] J. Smillie & C. Ulcigrai - « Geodesic flow on the Teichmüller disk of the regular octagon, cutting sequences and octagon continued fractions maps », in Dynamical numbers - interplay between dynamical systems and number theory, Contemp. Math., 2010, p. 29-65. | MR | Zbl

[25] -, « Beyond Sturmian sequences: coding linear trajectories in the regular octagon », Proc. Lond. Math. Soc. 102 (2011), p. 291-340. | MR | Zbl

[26] W. P. Thurston - « On the geometry and dynamics of diffeomorphisms of surfaces », Bull. Amer. Math. Soc. (N.S.) 19 (1988), p. 417-431. | MR | Zbl

[27] W. A. Veech - « Gauss measures for transformations on the space of interval exchange maps », Ann. of Math. 115 (1982), p. 201-242. | MR | Zbl

[28] -, « Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards », Invent. Math. 97 (1989), p. 553-583. | MR | Zbl

[29] Y. B. Vorobets - « Plane structures and billiards in rational polygons: the Veech alternative », Uspekhi Mat. Nauk 51 (1996), p. 3-42. | MR | Zbl

[30] M. Waldschmidt - Diophantine approximation on linear algebraic groups, Grund. Math. Wiss., vol. 326, Springer, 2000. | MR | Zbl

[31] A. Zorich - « Flat surfaces », in Frontiers in number theory, physics, and geometry. I, Springer, 2006, p. 437-583. | MR | Zbl

Cited by Sources: