@incollection{MSMF_1979__59__7_0, author = {Baeza, Ricardo}, title = {On the classification of quadratic forms over semi local rings}, booktitle = {Colloque sur les formes quadratiques (Montpellier, 1977)}, series = {M\'emoires de la Soci\'et\'e Math\'ematique de France}, pages = {7--10}, publisher = {Soci\'et\'e math\'ematique de France}, number = {59}, year = {1979}, doi = {10.24033/msmf.244}, mrnumber = {80m:10018}, zbl = {0404.10011}, url = {http://archive.numdam.org/articles/10.24033/msmf.244/} }
TY - CHAP AU - Baeza, Ricardo TI - On the classification of quadratic forms over semi local rings BT - Colloque sur les formes quadratiques (Montpellier, 1977) AU - Collectif T3 - Mémoires de la Société Mathématique de France PY - 1979 SP - 7 EP - 10 IS - 59 PB - Société mathématique de France UR - http://archive.numdam.org/articles/10.24033/msmf.244/ DO - 10.24033/msmf.244 ID - MSMF_1979__59__7_0 ER -
%0 Book Section %A Baeza, Ricardo %T On the classification of quadratic forms over semi local rings %B Colloque sur les formes quadratiques (Montpellier, 1977) %A Collectif %S Mémoires de la Société Mathématique de France %D 1979 %P 7-10 %N 59 %I Société mathématique de France %U http://archive.numdam.org/articles/10.24033/msmf.244/ %R 10.24033/msmf.244 %F MSMF_1979__59__7_0
Baeza, Ricardo. On the classification of quadratic forms over semi local rings, in Colloque sur les formes quadratiques (Montpellier, 1977), Mémoires de la Société Mathématique de France, no. 59 (1979), pp. 7-10. doi : 10.24033/msmf.244. http://archive.numdam.org/articles/10.24033/msmf.244/
[1] Quadratische Formen über semi lokalen Ringer. Habilitations schrift, Saarbrücken, 1975.
,[2] Quadratic forms over semi local rings. Lecture Notes in Math. n° 655. | MR | Zbl
,[3] Classification theorems for quadratic forms over fields. Com. Math. Helv. 49, 373-381 (1974). | MR | Zbl
, ,[4] On the classification of quadratic forms over semi local rings. J. of algebra, 33, 463-471, (1975). | MR | Zbl
,[5] Symmetric bilinear forms and quadratic forms. J. of algebra, 20, 144-160 (1972). | MR | Zbl
, ,Cited by Sources: