In this paper we deal with the task of uniformly approximating an -bi-Lipschitz curve by means of piecewise linear ones. This is rather simple if one is satisfied to have approximating functions which are -bi-Lipschitz, for instance this was already done with in [3, Lemma 5.5]. The main result of this paper is to do the same with (which is of course the best possible result); in the end, we generalize the result to the case of closed curves.
Publié le :
DOI : 10.4171/RSMUP/138-1
DOI : 10.4171/RSMUP/138-1
Classification :
46
Mots-clés : Approximation of curves, bi-Lipschitz curves
Mots-clés : Approximation of curves, bi-Lipschitz curves
Affiliations des auteurs :
Pratelli, Aldo 1 ;
Radici, Emanuela 1
@article{RSMUP_2017__138__1_0, author = {Pratelli, Aldo and Radici, Emanuela}, title = {On the piecewise approximation of {bi-Lipschitz} curves}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {1--37}, publisher = {European Mathematical Society Publishing House}, address = {Zuerich, Switzerland}, volume = {138}, year = {2017}, doi = {10.4171/RSMUP/138-1}, mrnumber = {3743243}, zbl = {1391.46041}, url = {http://archive.numdam.org/articles/10.4171/RSMUP/138-1/} }
TY - JOUR AU - Pratelli, Aldo AU - Radici, Emanuela TI - On the piecewise approximation of bi-Lipschitz curves JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2017 SP - 1 EP - 37 VL - 138 PB - European Mathematical Society Publishing House PP - Zuerich, Switzerland UR - http://archive.numdam.org/articles/10.4171/RSMUP/138-1/ DO - 10.4171/RSMUP/138-1 ID - RSMUP_2017__138__1_0 ER -
%0 Journal Article %A Pratelli, Aldo %A Radici, Emanuela %T On the piecewise approximation of bi-Lipschitz curves %J Rendiconti del Seminario Matematico della Università di Padova %D 2017 %P 1-37 %V 138 %I European Mathematical Society Publishing House %C Zuerich, Switzerland %U http://archive.numdam.org/articles/10.4171/RSMUP/138-1/ %R 10.4171/RSMUP/138-1 %F RSMUP_2017__138__1_0
Pratelli, Aldo; Radici, Emanuela. On the piecewise approximation of bi-Lipschitz curves. Rendiconti del Seminario Matematico della Università di Padova, Tome 138 (2017), pp. 1-37. doi : 10.4171/RSMUP/138-1. http://archive.numdam.org/articles/10.4171/RSMUP/138-1/
Cité par Sources :