In a previous paper of the first author a procedure was developed for counting the components of a graph through the knowledge of the components of one of its quotient graphs. Here we apply that procedure to the proper power graph
DOI : 10.4171/RSMUP/138-3
Mots-clés : Quotient graph, power graph, permutation groups
@article{RSMUP_2017__138__61_0, author = {Bubboloni, Daniela and Iranmanesh, Mohammad and Shaker, Seyed}, title = {Quotient graphs for power graphs}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {61--89}, publisher = {European Mathematical Society Publishing House}, address = {Zuerich, Switzerland}, volume = {138}, year = {2017}, doi = {10.4171/RSMUP/138-3}, mrnumber = {3743245}, zbl = {1387.05109}, url = {https://www.numdam.org/articles/10.4171/RSMUP/138-3/} }
TY - JOUR AU - Bubboloni, Daniela AU - Iranmanesh, Mohammad AU - Shaker, Seyed TI - Quotient graphs for power graphs JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2017 SP - 61 EP - 89 VL - 138 PB - European Mathematical Society Publishing House PP - Zuerich, Switzerland UR - https://www.numdam.org/articles/10.4171/RSMUP/138-3/ DO - 10.4171/RSMUP/138-3 ID - RSMUP_2017__138__61_0 ER -
%0 Journal Article %A Bubboloni, Daniela %A Iranmanesh, Mohammad %A Shaker, Seyed %T Quotient graphs for power graphs %J Rendiconti del Seminario Matematico della Università di Padova %D 2017 %P 61-89 %V 138 %I European Mathematical Society Publishing House %C Zuerich, Switzerland %U https://www.numdam.org/articles/10.4171/RSMUP/138-3/ %R 10.4171/RSMUP/138-3 %F RSMUP_2017__138__61_0
Bubboloni, Daniela; Iranmanesh, Mohammad; Shaker, Seyed. Quotient graphs for power graphs. Rendiconti del Seminario Matematico della Università di Padova, Tome 138 (2017), pp. 61-89. doi : 10.4171/RSMUP/138-3. https://www.numdam.org/articles/10.4171/RSMUP/138-3/
- Metric and strong metric dimension in intersection power graphs of finite groups, Communications in Algebra, Volume 53 (2025) no. 5, p. 1829 | DOI:10.1080/00927872.2024.2423267
- Graphs on groups in terms of the order of elements: A review, Discrete Mathematics, Algorithms and Applications, Volume 16 (2024) no. 03 | DOI:10.1142/s1793830923300035
- Forbidden subgraphs in enhanced power graphs of finite groups, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, Volume 118 (2024) no. 3 | DOI:10.1007/s13398-024-01611-1
- Perfect codes in proper intersection power graphs of finite groups, Applicable Algebra in Engineering, Communication and Computing (2023) | DOI:10.1007/s00200-023-00626-2
- Connectivity of superpower graphs of some non-abelian finite groups, Discrete Mathematics, Algorithms and Applications, Volume 15 (2023) no. 04 | DOI:10.1142/s1793830922501087
- On the order supergraph of the power graph of a finite group, Ricerche di Matematica, Volume 71 (2022) no. 2, p. 381 | DOI:10.1007/s11587-020-00520-w
- Forbidden subgraphs in reduced power graphs of finite groups, AIMS Mathematics, Volume 6 (2021) no. 5, p. 5410 | DOI:10.3934/math.2021319
- Some properties of various graphs associated with finite groups, Algebra and Discrete Mathematics, Volume 31 (2021) no. 2, p. 195 | DOI:10.12958/adm1197
- Proper connection of power graphs of finite groups, Journal of Algebra and Its Applications, Volume 20 (2021) no. 03, p. 2150033 | DOI:10.1142/s021949882150033x
- Finite groups whose intersection power graphs are toroidal and projective-planar, Open Mathematics, Volume 19 (2021) no. 1, p. 850 | DOI:10.1515/math-2021-0071
- Perfect codes in proper reduced power graphs of finite groups, Communications in Algebra, Volume 48 (2020) no. 9, p. 3881 | DOI:10.1080/00927872.2020.1749845
- The metric dimension of the enhanced power graph of a finite group, Journal of Algebra and Its Applications, Volume 19 (2020) no. 01, p. 2050020 | DOI:10.1142/s0219498820500206
- Vertex connectivity of the power graph of a finite cyclic group II, Journal of Algebra and Its Applications, Volume 19 (2020) no. 02, p. 2050040 | DOI:10.1142/s0219498820500401
Cité par 13 documents. Sources : Crossref