Quotient graphs for power graphs
Rendiconti del Seminario Matematico della Università di Padova, Tome 138 (2017), pp. 61-89.

In a previous paper of the first author a procedure was developed for counting the components of a graph through the knowledge of the components of one of its quotient graphs. Here we apply that procedure to the proper power graph 𝒫0(G) of a finite group G, finding a formula for the number of its components which is particularly illuminative when GSn is a fusion controlled permutation group. We make use of the proper quotient power graph 𝒫˜0(G), the proper order graph 𝒪0(G) and the proper type graph 𝒯0(G). All those graphs are quotient of 𝒫0(G). We emphasize the strong link between them determining number and typology of the components of the above graphs for G=Sn. In particular, we prove that the power graph 𝒫(Sn) is 2-connected if and only if the type graph 𝒯(Sn) is 2-connected, if and only if the order graph 𝒪(Sn) is 2-connected, that is, if and only if either n=2 or none of n,n-1 is a prime.

Publié le :
DOI : 10.4171/RSMUP/138-3
Classification : 05, 20
Mots-clés : Quotient graph, power graph, permutation groups
Bubboloni, Daniela 1 ; Iranmanesh, Mohammad 2 ; Shaker, Seyed 2

1 Università degli Studi di Firenze, Italy
2 Yazd University, Iran
@article{RSMUP_2017__138__61_0,
     author = {Bubboloni, Daniela and Iranmanesh, Mohammad and Shaker, Seyed},
     title = {Quotient graphs for power graphs},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {61--89},
     publisher = {European Mathematical Society Publishing House},
     address = {Zuerich, Switzerland},
     volume = {138},
     year = {2017},
     doi = {10.4171/RSMUP/138-3},
     mrnumber = {3743245},
     zbl = {1387.05109},
     url = {https://www.numdam.org/articles/10.4171/RSMUP/138-3/}
}
TY  - JOUR
AU  - Bubboloni, Daniela
AU  - Iranmanesh, Mohammad
AU  - Shaker, Seyed
TI  - Quotient graphs for power graphs
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2017
SP  - 61
EP  - 89
VL  - 138
PB  - European Mathematical Society Publishing House
PP  - Zuerich, Switzerland
UR  - https://www.numdam.org/articles/10.4171/RSMUP/138-3/
DO  - 10.4171/RSMUP/138-3
ID  - RSMUP_2017__138__61_0
ER  - 
%0 Journal Article
%A Bubboloni, Daniela
%A Iranmanesh, Mohammad
%A Shaker, Seyed
%T Quotient graphs for power graphs
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2017
%P 61-89
%V 138
%I European Mathematical Society Publishing House
%C Zuerich, Switzerland
%U https://www.numdam.org/articles/10.4171/RSMUP/138-3/
%R 10.4171/RSMUP/138-3
%F RSMUP_2017__138__61_0
Bubboloni, Daniela; Iranmanesh, Mohammad; Shaker, Seyed. Quotient graphs for power graphs. Rendiconti del Seminario Matematico della Università di Padova, Tome 138 (2017), pp. 61-89. doi : 10.4171/RSMUP/138-3. https://www.numdam.org/articles/10.4171/RSMUP/138-3/
  • Ma, Xuanlong; Fu, Ruiqin Metric and strong metric dimension in intersection power graphs of finite groups, Communications in Algebra, Volume 53 (2025) no. 5, p. 1829 | DOI:10.1080/00927872.2024.2423267
  • Madhumitha, S.; Naduvath, Sudev Graphs on groups in terms of the order of elements: A review, Discrete Mathematics, Algorithms and Applications, Volume 16 (2024) no. 03 | DOI:10.1142/s1793830923300035
  • Ma, Xuanlong; Zahirović, Samir; Lv, Yubo; She, Yanhong Forbidden subgraphs in enhanced power graphs of finite groups, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, Volume 118 (2024) no. 3 | DOI:10.1007/s13398-024-01611-1
  • Ma, Xuanlong; Li, Lan; Zhong, Guo Perfect codes in proper intersection power graphs of finite groups, Applicable Algebra in Engineering, Communication and Computing (2023) | DOI:10.1007/s00200-023-00626-2
  • Kumar, Ajay; Selvaganesh, Lavanya; Tamizh Chelvam, T. Connectivity of superpower graphs of some non-abelian finite groups, Discrete Mathematics, Algorithms and Applications, Volume 15 (2023) no. 04 | DOI:10.1142/s1793830922501087
  • Ma, Xuanlong; Su, Huadong On the order supergraph of the power graph of a finite group, Ricerche di Matematica, Volume 71 (2022) no. 2, p. 381 | DOI:10.1007/s11587-020-00520-w
  • Li, Huani; Fu, Ruiqin; Ma, Xuanlong Forbidden subgraphs in reduced power graphs of finite groups, AIMS Mathematics, Volume 6 (2021) no. 5, p. 5410 | DOI:10.3934/math.2021319
  • Chen, X. Y.; Moghaddamfar, A. R.; Zohourattar, M. Some properties of various graphs associated with finite groups, Algebra and Discrete Mathematics, Volume 31 (2021) no. 2, p. 195 | DOI:10.12958/adm1197
  • Ma, Xuanlong Proper connection of power graphs of finite groups, Journal of Algebra and Its Applications, Volume 20 (2021) no. 03, p. 2150033 | DOI:10.1142/s021949882150033x
  • Li, Huani; Ma, Xuanlong; Fu, Ruiqin Finite groups whose intersection power graphs are toroidal and projective-planar, Open Mathematics, Volume 19 (2021) no. 1, p. 850 | DOI:10.1515/math-2021-0071
  • Ma, Xuanlong Perfect codes in proper reduced power graphs of finite groups, Communications in Algebra, Volume 48 (2020) no. 9, p. 3881 | DOI:10.1080/00927872.2020.1749845
  • Ma, Xuanlong; She, Yanhong The metric dimension of the enhanced power graph of a finite group, Journal of Algebra and Its Applications, Volume 19 (2020) no. 01, p. 2050020 | DOI:10.1142/s0219498820500206
  • Chattopadhyay, Sriparna; Patra, Kamal Lochan; Sahoo, Binod Kumar Vertex connectivity of the power graph of a finite cyclic group II, Journal of Algebra and Its Applications, Volume 19 (2020) no. 02, p. 2050040 | DOI:10.1142/s0219498820500401

Cité par 13 documents. Sources : Crossref