Lusin type theorems for Radon measures
Rendiconti del Seminario Matematico della Università di Padova, Tome 138 (2017), pp. 193-207.

We add to the literature the following observation. If μ is a singular measure on n which assigns measure zero to every porous set and f: n is a Lipschitz function which is non-differentiable μ-a.e., then for every C 1 function g: n it holds

μ{x n :f(x)=g(x)}=0.
In other words the Lusin type approximation property of Lipschitz functions with C 1 functions does not hold with respect to a general Radon measure.

Publié le :
DOI : 10.4171/RSMUP/138-9
Classification : 26, 41
Mots-clés : Lusin type approximation, Lipschitz function, porous set
Marchese, Andrea 1

1 Universität Zürich, Switzerland
@article{RSMUP_2017__138__193_0,
     author = {Marchese, Andrea},
     title = {Lusin type theorems for {Radon} measures},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {193--207},
     publisher = {European Mathematical Society Publishing House},
     address = {Zuerich, Switzerland},
     volume = {138},
     year = {2017},
     doi = {10.4171/RSMUP/138-9},
     mrnumber = {3743251},
     zbl = {1382.28002},
     url = {http://archive.numdam.org/articles/10.4171/RSMUP/138-9/}
}
TY  - JOUR
AU  - Marchese, Andrea
TI  - Lusin type theorems for Radon measures
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2017
SP  - 193
EP  - 207
VL  - 138
PB  - European Mathematical Society Publishing House
PP  - Zuerich, Switzerland
UR  - http://archive.numdam.org/articles/10.4171/RSMUP/138-9/
DO  - 10.4171/RSMUP/138-9
ID  - RSMUP_2017__138__193_0
ER  - 
%0 Journal Article
%A Marchese, Andrea
%T Lusin type theorems for Radon measures
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2017
%P 193-207
%V 138
%I European Mathematical Society Publishing House
%C Zuerich, Switzerland
%U http://archive.numdam.org/articles/10.4171/RSMUP/138-9/
%R 10.4171/RSMUP/138-9
%F RSMUP_2017__138__193_0
Marchese, Andrea. Lusin type theorems for Radon measures. Rendiconti del Seminario Matematico della Università di Padova, Tome 138 (2017), pp. 193-207. doi : 10.4171/RSMUP/138-9. http://archive.numdam.org/articles/10.4171/RSMUP/138-9/

Cité par Sources :