We add to the literature the following observation. If is a singular measure on which assigns measure zero to every porous set and is a Lipschitz function which is non-differentiable -a.e., then for every function it holds
Publié le :
DOI : 10.4171/RSMUP/138-9
DOI : 10.4171/RSMUP/138-9
Classification :
26, 41
Mots-clés : Lusin type approximation, Lipschitz function, porous set
Mots-clés : Lusin type approximation, Lipschitz function, porous set
Affiliations des auteurs :
Marchese, Andrea 1
@article{RSMUP_2017__138__193_0, author = {Marchese, Andrea}, title = {Lusin type theorems for {Radon} measures}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {193--207}, publisher = {European Mathematical Society Publishing House}, address = {Zuerich, Switzerland}, volume = {138}, year = {2017}, doi = {10.4171/RSMUP/138-9}, mrnumber = {3743251}, zbl = {1382.28002}, url = {http://archive.numdam.org/articles/10.4171/RSMUP/138-9/} }
TY - JOUR AU - Marchese, Andrea TI - Lusin type theorems for Radon measures JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2017 SP - 193 EP - 207 VL - 138 PB - European Mathematical Society Publishing House PP - Zuerich, Switzerland UR - http://archive.numdam.org/articles/10.4171/RSMUP/138-9/ DO - 10.4171/RSMUP/138-9 ID - RSMUP_2017__138__193_0 ER -
%0 Journal Article %A Marchese, Andrea %T Lusin type theorems for Radon measures %J Rendiconti del Seminario Matematico della Università di Padova %D 2017 %P 193-207 %V 138 %I European Mathematical Society Publishing House %C Zuerich, Switzerland %U http://archive.numdam.org/articles/10.4171/RSMUP/138-9/ %R 10.4171/RSMUP/138-9 %F RSMUP_2017__138__193_0
Marchese, Andrea. Lusin type theorems for Radon measures. Rendiconti del Seminario Matematico della Università di Padova, Tome 138 (2017), pp. 193-207. doi : 10.4171/RSMUP/138-9. http://archive.numdam.org/articles/10.4171/RSMUP/138-9/
Cité par Sources :