The maximal number of skew lines on Schur’s quartic
Rendiconti del Seminario Matematico della Università di Padova, Tome 142 (2019), pp. 81-91.
Le texte intégral des articles récents est réservé aux abonnés de la revue.
Consultez l'article sur le site de la revue.
Since 1882 it is known that the so-called Schur’s quartic contains exactly 64 lines.However, it has not yet been establishedwhat is themaximumnumber of pairwise disjoint lines that it can have. The aim of our work is to show in an elementary and self-contained way that the maximum number of pairwise disjoint lines in Schur’s quartic is 16 (without using Nikulins’s theorem or Miyaoka’s upper bound).
Publié le :
DOI : 10.4171/RSMUP/31
DOI : 10.4171/RSMUP/31
Classification :
14, 00
Mots-clés : Schur’s quartic, skew lines
Mots-clés : Schur’s quartic, skew lines
Affiliations des auteurs :
Rojas, Jacqueline 1 ;
Lira, Dayane 1
@article{RSMUP_2019__142__81_0, author = {Rojas, Jacqueline and Lira, Dayane}, title = {The maximal number of skew lines on {Schur{\textquoteright}s} quartic}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {81--91}, publisher = {European Mathematical Society Publishing House}, address = {Zuerich, Switzerland}, volume = {142}, year = {2019}, doi = {10.4171/RSMUP/31}, mrnumber = {4032805}, zbl = {1436.14090}, url = {http://archive.numdam.org/articles/10.4171/RSMUP/31/} }
TY - JOUR AU - Rojas, Jacqueline AU - Lira, Dayane TI - The maximal number of skew lines on Schur’s quartic JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2019 SP - 81 EP - 91 VL - 142 PB - European Mathematical Society Publishing House PP - Zuerich, Switzerland UR - http://archive.numdam.org/articles/10.4171/RSMUP/31/ DO - 10.4171/RSMUP/31 ID - RSMUP_2019__142__81_0 ER -
%0 Journal Article %A Rojas, Jacqueline %A Lira, Dayane %T The maximal number of skew lines on Schur’s quartic %J Rendiconti del Seminario Matematico della Università di Padova %D 2019 %P 81-91 %V 142 %I European Mathematical Society Publishing House %C Zuerich, Switzerland %U http://archive.numdam.org/articles/10.4171/RSMUP/31/ %R 10.4171/RSMUP/31 %F RSMUP_2019__142__81_0
Rojas, Jacqueline; Lira, Dayane. The maximal number of skew lines on Schur’s quartic. Rendiconti del Seminario Matematico della Università di Padova, Tome 142 (2019), pp. 81-91. doi : 10.4171/RSMUP/31. http://archive.numdam.org/articles/10.4171/RSMUP/31/
Cité par Sources :