Noncommutative determinants, Cauchy–Binet formulae, and Capelli-type identities II. Grassmann and quantum oscillator algebra representation
Annales de l’Institut Henri Poincaré D, Tome 1 (2014) no. 1, pp. 1-46.

We prove that, for X, Y, A and B matrices with entries in a non-commutative ring such that

[ X i j , Y k ] = - A i B k j ,

satisfying suitable commutation relations (in particular, X is a Manin matrix), row-pseudo-commutative matrix (a Manin matrix), the following identity holds:

col - det X col - det Y = 0 col - det ( a A + X ( I - a B ) - 1 Y ) 0

Furthermore, if also Y is a Manin matrix, [Y ij ,Y kl ]=0 for ik, jl

col - det X col - det Y = 𝒟 ( ψ , ψ ¯ ) exp k 0 ( ψ ¯ A ψ ) k k + 1 ( ψ ¯ X B k Y ψ )

Here 0 and 0, are respectively the bra and the ket of the ground state, a and a the creation and annihilation operators of a quantum harmonic oscillator, while ψ ¯ i and ψ i are Grassmann variables in a Berezin integral. These results should be seen as a generalization of the classical Cauchy–Binet formula, in which A and B are null matrices, and of the non-commutative generalization, the Capelli identity, in which A and B are identity matrices and [X ij ,X k ]=[Y ij ,Y k ]=0.

Publié le :
DOI : 10.4171/aihpd/1
Classification : 05-XX, 17-XX
Mots-clés : Invariant Theory, Capelli identity, non-commutative determinant, Lukasiewicz paths, right-quantum matrix, Cartier-Foata matrix, Manin matrix
@article{AIHPD_2014__1_1_1_0,
     author = {Caracciolo, Sergio and Sportiello, Andrea},
     title = {Noncommutative determinants, {Cauchy{\textendash}Binet} formulae, and {Capelli-type}  identities {II.} {Grassmann} and quantum oscillator algebra representation},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {1--46},
     volume = {1},
     number = {1},
     year = {2014},
     doi = {10.4171/aihpd/1},
     mrnumber = {3166201},
     zbl = {1383.15007},
     language = {en},
     url = {http://archive.numdam.org/articles/10.4171/aihpd/1/}
}
TY  - JOUR
AU  - Caracciolo, Sergio
AU  - Sportiello, Andrea
TI  - Noncommutative determinants, Cauchy–Binet formulae, and Capelli-type  identities II. Grassmann and quantum oscillator algebra representation
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2014
SP  - 1
EP  - 46
VL  - 1
IS  - 1
UR  - http://archive.numdam.org/articles/10.4171/aihpd/1/
DO  - 10.4171/aihpd/1
LA  - en
ID  - AIHPD_2014__1_1_1_0
ER  - 
%0 Journal Article
%A Caracciolo, Sergio
%A Sportiello, Andrea
%T Noncommutative determinants, Cauchy–Binet formulae, and Capelli-type  identities II. Grassmann and quantum oscillator algebra representation
%J Annales de l’Institut Henri Poincaré D
%D 2014
%P 1-46
%V 1
%N 1
%U http://archive.numdam.org/articles/10.4171/aihpd/1/
%R 10.4171/aihpd/1
%G en
%F AIHPD_2014__1_1_1_0
Caracciolo, Sergio; Sportiello, Andrea. Noncommutative determinants, Cauchy–Binet formulae, and Capelli-type  identities II. Grassmann and quantum oscillator algebra representation. Annales de l’Institut Henri Poincaré D, Tome 1 (2014) no. 1, pp. 1-46. doi : 10.4171/aihpd/1. http://archive.numdam.org/articles/10.4171/aihpd/1/

Cité par Sources :