Constellations and τ-functions for rationally weighted Hurwitz numbers
Annales de l’Institut Henri Poincaré D, Tome 8 (2021) no. 1, pp. 119-158.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Weighted constellations give graphical representations of weighted branched coverings of the Riemann sphere. They were introduced to provide a combinatorial interpretation of the 2D Toda τ-functions of hypergeometric type serving as generating functions for weighted Hurwitz numbers in the case of polynomial weight generating functions. The product over all vertex and edge weights of a given weighted constellation, summed over all configurations, reproduces the τ-function. In the present work, this is generalized to constellations in which the weighting parameters are determined by a rational weight generating function. The associated τ-function may be expressed as a sum over the weights of doubly labelled weighted constellations, with two types of weighting parameters associated to each equivalence class of branched coverings. The double labelling of branch points, referred to as “colour” and “flavour” indices, is required by the fact that, in the Taylor expansion of the weight generating function, a particular colour from amongst the denominator parameters may appear multiply, and the flavour labels indicate this multiplicity.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/104
Classification : 05-XX, 20-XX
Mots-clés : $\tau$ functions, weighted constellations, weighted Hurwitz numbers, generating functions, graphical enumeration
@article{AIHPD_2021__8_1_119_0,
     author = {Harnad, John and Runov, Boris},
     title = {Constellations and $\tau$-functions for rationally weighted {Hurwitz} numbers},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {119--158},
     volume = {8},
     number = {1},
     year = {2021},
     doi = {10.4171/aihpd/104},
     mrnumber = {4228621},
     zbl = {1465.05012},
     language = {en},
     url = {http://archive.numdam.org/articles/10.4171/aihpd/104/}
}
TY  - JOUR
AU  - Harnad, John
AU  - Runov, Boris
TI  - Constellations and $\tau$-functions for rationally weighted Hurwitz numbers
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2021
SP  - 119
EP  - 158
VL  - 8
IS  - 1
UR  - http://archive.numdam.org/articles/10.4171/aihpd/104/
DO  - 10.4171/aihpd/104
LA  - en
ID  - AIHPD_2021__8_1_119_0
ER  - 
%0 Journal Article
%A Harnad, John
%A Runov, Boris
%T Constellations and $\tau$-functions for rationally weighted Hurwitz numbers
%J Annales de l’Institut Henri Poincaré D
%D 2021
%P 119-158
%V 8
%N 1
%U http://archive.numdam.org/articles/10.4171/aihpd/104/
%R 10.4171/aihpd/104
%G en
%F AIHPD_2021__8_1_119_0
Harnad, John; Runov, Boris. Constellations and $\tau$-functions for rationally weighted Hurwitz numbers. Annales de l’Institut Henri Poincaré D, Tome 8 (2021) no. 1, pp. 119-158. doi : 10.4171/aihpd/104. http://archive.numdam.org/articles/10.4171/aihpd/104/

Cité par Sources :