Statistical mechanical models for quantum codes with correlated noise
Annales de l’Institut Henri Poincaré D, Tome 8 (2021) no. 2, pp. 269-321.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We give a broad generalisation of the mapping, originally due to Dennis, Kitaev, Landahl, and Preskill, from quantum error correcting codes to statistical mechanical models. We show how the mapping can be extended to arbitrary stabiliser or subsystem codes subject to correlated Pauli noise models, including models of fault tolerance. This mapping connects the error correction threshold of the quantum code to a phase transition in the statistical mechanical model. Thus, any existing method for finding phase transitions, such as Monte Carlo simulations, can be applied to approximate the threshold of any such code, without having to perform optimal decoding. By way of example, we numerically study the threshold of the surface code under mildly correlated bit-flip noise, showing that noise with bunching correlations causes the threshold to drop to p corr =10.04(6)%, from its known iid value of p iid =10.917(3)%. Complementing this, we show that the mapping also allows us to utilise any algorithm which can calculate/approximate partition functions of classical statistical mechanical models to perform optimal/approximately optimal decoding. Specifically, for 2D codes subject to locally correlated noise, we give a linear-time tensor network-based algorithm for approximate optimal decoding which extends the MPS decoder of Bravyi, Suchara and Vargo.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/105
Classification : 81-XX
Mots-clés : Quantum error correction, statistical mechanics, disordered systems, phase transitions
@article{AIHPD_2021__8_2_269_0,
     author = {Chubb, Christopher T. and Flammia, Steven T.},
     title = {Statistical mechanical models for quantum codes with correlated noise},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {269--321},
     volume = {8},
     number = {2},
     year = {2021},
     doi = {10.4171/aihpd/105},
     mrnumber = {4261673},
     zbl = {1469.81012},
     language = {en},
     url = {http://archive.numdam.org/articles/10.4171/aihpd/105/}
}
TY  - JOUR
AU  - Chubb, Christopher T.
AU  - Flammia, Steven T.
TI  - Statistical mechanical models for quantum codes with correlated noise
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2021
SP  - 269
EP  - 321
VL  - 8
IS  - 2
UR  - http://archive.numdam.org/articles/10.4171/aihpd/105/
DO  - 10.4171/aihpd/105
LA  - en
ID  - AIHPD_2021__8_2_269_0
ER  - 
%0 Journal Article
%A Chubb, Christopher T.
%A Flammia, Steven T.
%T Statistical mechanical models for quantum codes with correlated noise
%J Annales de l’Institut Henri Poincaré D
%D 2021
%P 269-321
%V 8
%N 2
%U http://archive.numdam.org/articles/10.4171/aihpd/105/
%R 10.4171/aihpd/105
%G en
%F AIHPD_2021__8_2_269_0
Chubb, Christopher T.; Flammia, Steven T. Statistical mechanical models for quantum codes with correlated noise. Annales de l’Institut Henri Poincaré D, Tome 8 (2021) no. 2, pp. 269-321. doi : 10.4171/aihpd/105. http://archive.numdam.org/articles/10.4171/aihpd/105/

Cité par Sources :