We analyze conditions under which a projection from the vector-valued Jack orMacdonald polynomials to scalar polynomials has useful properties, specially commuting with the actions of the symmetric group or Hecke algebra, respectively, and with the Cherednik operators for which these polynomials are eigenfunctions. In the framework of representation theory of the symmetric group and the Hecke algebra, we study the relation between singular nonsymmetric Jack and Macdonald polynomials and highest weight symmetric Jack and Macdonald polynomials. Moreover, we study the quasistaircase partition as a continuation of our study on the conjectures of Bernevig and Haldane on clustering properties of symmetric Jack polynomials.
Publié le :
DOI : 10.4171/aihpd/119
Mots-clés : Macdonald and Jack Polynomials, singular polynomials, highest weight polynomials, vector-valued polynomials, representation theory of symmetric group and Hecke algebra
@article{AIHPD_2022__9_2_297_0, author = {Colmenarejo, Laura and Dunkl, Charles F. and Luque, Jean-Gabriel}, title = {Connections between vector-valued and highest weight {Jack} and {Macdonald} polynomials}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {297--348}, volume = {9}, number = {2}, year = {2022}, doi = {10.4171/aihpd/119}, mrnumber = {4450016}, zbl = {1517.33007}, language = {en}, url = {http://archive.numdam.org/articles/10.4171/aihpd/119/} }
TY - JOUR AU - Colmenarejo, Laura AU - Dunkl, Charles F. AU - Luque, Jean-Gabriel TI - Connections between vector-valued and highest weight Jack and Macdonald polynomials JO - Annales de l’Institut Henri Poincaré D PY - 2022 SP - 297 EP - 348 VL - 9 IS - 2 UR - http://archive.numdam.org/articles/10.4171/aihpd/119/ DO - 10.4171/aihpd/119 LA - en ID - AIHPD_2022__9_2_297_0 ER -
%0 Journal Article %A Colmenarejo, Laura %A Dunkl, Charles F. %A Luque, Jean-Gabriel %T Connections between vector-valued and highest weight Jack and Macdonald polynomials %J Annales de l’Institut Henri Poincaré D %D 2022 %P 297-348 %V 9 %N 2 %U http://archive.numdam.org/articles/10.4171/aihpd/119/ %R 10.4171/aihpd/119 %G en %F AIHPD_2022__9_2_297_0
Colmenarejo, Laura; Dunkl, Charles F.; Luque, Jean-Gabriel. Connections between vector-valued and highest weight Jack and Macdonald polynomials. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 2, pp. 297-348. doi : 10.4171/aihpd/119. http://archive.numdam.org/articles/10.4171/aihpd/119/
Cité par Sources :