Boundary measurement and sign variation in real projective space
Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 3, pp. 543-565.
Le texte intégral des articles récents est réservé aux abonnés de la revue.
Consultez l'article sur le site de la revue.
We define two generalizations of the totally nonnegative Grassmannian and determine their topology in the case of real projective space.We find the spaces to be PL manifolds with boundary which are homotopy equivalent to another real projective space of smaller dimension. One generalization makes use of sign variation while the other uses boundary measurement. Spaces arising from boundary measurement are shown to admit Cohen–Macaulay triangulations.
Accepté le :
Publié le :
DOI : 10.4171/aihpd/125
Publié le :
DOI : 10.4171/aihpd/125
Classification :
05-XX, 06-XX, 14-XX, 57-XX
Mots-clés : sign variation, totally nonnegative Grassmannian, PL manifold
Mots-clés : sign variation, totally nonnegative Grassmannian, PL manifold
@article{AIHPD_2022__9_3_543_0, author = {Machacek, John}, title = {Boundary measurement and sign variation in real projective space}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {543--565}, volume = {9}, number = {3}, year = {2022}, doi = {10.4171/aihpd/125}, mrnumber = {4525140}, zbl = {1510.14035}, language = {en}, url = {http://archive.numdam.org/articles/10.4171/aihpd/125/} }
TY - JOUR AU - Machacek, John TI - Boundary measurement and sign variation in real projective space JO - Annales de l’Institut Henri Poincaré D PY - 2022 SP - 543 EP - 565 VL - 9 IS - 3 UR - http://archive.numdam.org/articles/10.4171/aihpd/125/ DO - 10.4171/aihpd/125 LA - en ID - AIHPD_2022__9_3_543_0 ER -
Machacek, John. Boundary measurement and sign variation in real projective space. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 3, pp. 543-565. doi : 10.4171/aihpd/125. http://archive.numdam.org/articles/10.4171/aihpd/125/
Cité par Sources :