Hepp’s bound for Feynman graphs and matroids
Annales de l’Institut Henri Poincaré D, Tome 10 (2023) no. 1, pp. 31-119.
Le texte intégral des articles récents est réservé aux abonnés de la revue.
Consultez l'article sur le site de la revue.
We study a rational matroid invariant, obtained as the tropicalization of the Feynman period integral. It equals the volume of the polar of the matroid polytope and we give efficient formulas for its computation. This invariant is proven to respect all known identities of Feynman integrals for graphs. We observe a strong correlation between the tropical and transcendental integrals, which yields a method to approximate unknown Feynman periods.
Supplementary Materials:
Supplementary material for this article is supplied as a separate file:
Accepté le :
Publié le :
DOI : 10.4171/aihpd/126
Publié le :
DOI : 10.4171/aihpd/126
Classification :
81-XX, 05-XX, 52-XX
Mots-clés : Feynman integrals, tropicalization, Mellin transform, matroid invariants, panning tree polytope, matroid polytope, polytope volume
Mots-clés : Feynman integrals, tropicalization, Mellin transform, matroid invariants, panning tree polytope, matroid polytope, polytope volume
@article{AIHPD_2023__10_1_31_0, author = {Panzer, Erik}, title = {Hepp{\textquoteright}s bound for {Feynman} graphs and matroids}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {31--119}, volume = {10}, number = {1}, year = {2023}, doi = {10.4171/aihpd/126}, mrnumber = {4548771}, zbl = {1520.81076}, language = {en}, url = {http://archive.numdam.org/articles/10.4171/aihpd/126/} }
Panzer, Erik. Hepp’s bound for Feynman graphs and matroids. Annales de l’Institut Henri Poincaré D, Tome 10 (2023) no. 1, pp. 31-119. doi : 10.4171/aihpd/126. http://archive.numdam.org/articles/10.4171/aihpd/126/
Cité par Sources :