Topological quantum field theory and polynomial identities for graphs on the torus
Annales de l’Institut Henri Poincaré D, Tome 10 (2023) no. 2, pp. 277-298.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We establish a relation between the trace evaluation in SO(3) topological quantum field theory and evaluations of a topological Tutte polynomial. As an application, a generalization of the Tutte golden identity is proved for graphs on the torus.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/130
Classification : 57-XX, 05-XX, 82-XX
Mots-clés : topological quantum field theory, graphs on surfaces, topological Tutte polynomial, the Tutte golden identity
@article{AIHPD_2023__10_2_277_0,
     author = {Fendley, Paul and Krushkal, Vyacheslav},
     title = {Topological quantum field theory and polynomial identities for graphs on the torus},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {277--298},
     volume = {10},
     number = {2},
     year = {2023},
     doi = {10.4171/aihpd/130},
     mrnumber = {4581444},
     zbl = {1530.57009},
     language = {en},
     url = {http://archive.numdam.org/articles/10.4171/aihpd/130/}
}
TY  - JOUR
AU  - Fendley, Paul
AU  - Krushkal, Vyacheslav
TI  - Topological quantum field theory and polynomial identities for graphs on the torus
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2023
SP  - 277
EP  - 298
VL  - 10
IS  - 2
UR  - http://archive.numdam.org/articles/10.4171/aihpd/130/
DO  - 10.4171/aihpd/130
LA  - en
ID  - AIHPD_2023__10_2_277_0
ER  - 
%0 Journal Article
%A Fendley, Paul
%A Krushkal, Vyacheslav
%T Topological quantum field theory and polynomial identities for graphs on the torus
%J Annales de l’Institut Henri Poincaré D
%D 2023
%P 277-298
%V 10
%N 2
%U http://archive.numdam.org/articles/10.4171/aihpd/130/
%R 10.4171/aihpd/130
%G en
%F AIHPD_2023__10_2_277_0
Fendley, Paul; Krushkal, Vyacheslav. Topological quantum field theory and polynomial identities for graphs on the torus. Annales de l’Institut Henri Poincaré D, Tome 10 (2023) no. 2, pp. 277-298. doi : 10.4171/aihpd/130. http://archive.numdam.org/articles/10.4171/aihpd/130/

Cité par Sources :