Determinantal probability measures on Grassmannians
Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 4, pp. 659-732.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We introduce and study a class of determinantal probability measures generalising the class of discrete determinantal point processes. These measures live on the Grassmannian of a real, complex, or quaternionic inner product space that is split into pairwise orthogonal finite-dimensional subspaces. They are determined by a positive self-adjoint contraction of the inner product space, in a way that is equivariant under the action of the group of isometries that preserve the splitting.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/152
Classification : 60-XX, 14-XX, 81-XX, 82-XX
Mots-clés : determinantal measures, geometric probability, integral geometry, random geometry, enumerative geometry, Grassmannians, Plücker coordinates, graded vector spaces, matroid stratification, uniform spanning tree, quantum spanning forest
@article{AIHPD_2022__9_4_659_0,
     author = {Kassel, Adrien and L\'evy, Thierry},
     title = {Determinantal probability measures on {Grassmannians}},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {659--732},
     volume = {9},
     number = {4},
     year = {2022},
     doi = {10.4171/aihpd/152},
     mrnumber = {4525143},
     zbl = {1511.60072},
     language = {en},
     url = {https://www.numdam.org/articles/10.4171/aihpd/152/}
}
TY  - JOUR
AU  - Kassel, Adrien
AU  - Lévy, Thierry
TI  - Determinantal probability measures on Grassmannians
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2022
SP  - 659
EP  - 732
VL  - 9
IS  - 4
UR  - https://www.numdam.org/articles/10.4171/aihpd/152/
DO  - 10.4171/aihpd/152
LA  - en
ID  - AIHPD_2022__9_4_659_0
ER  - 
%0 Journal Article
%A Kassel, Adrien
%A Lévy, Thierry
%T Determinantal probability measures on Grassmannians
%J Annales de l’Institut Henri Poincaré D
%D 2022
%P 659-732
%V 9
%N 4
%U https://www.numdam.org/articles/10.4171/aihpd/152/
%R 10.4171/aihpd/152
%G en
%F AIHPD_2022__9_4_659_0
Kassel, Adrien; Lévy, Thierry. Determinantal probability measures on Grassmannians. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 4, pp. 659-732. doi : 10.4171/aihpd/152. https://www.numdam.org/articles/10.4171/aihpd/152/
  • Dahlqvist, Antoine; Lemoine, Thibaut Large N limit of the Yang–Mills measure on compact surfaces II: Makeenko–Migdal equations and the planar master field, Forum of Mathematics, Sigma, Volume 13 (2025) | DOI:10.1017/fms.2024.152
  • Bardenet, Rémi; Fanuel, Michaël; Feller, Alexandre On sampling determinantal and Pfaffian point processes on a quantum computer, Journal of Physics A: Mathematical and Theoretical, Volume 57 (2024) no. 5, p. 055202 | DOI:10.1088/1751-8121/ad1b75
  • Kassel, Adrien; Lévy, Thierry On the mean projection theorem for determinantal point processes, Latin American Journal of Probability and Mathematical Statistics, Volume 20 (2023) no. 1, p. 497 | DOI:10.30757/alea.v20-17

Cité par 3 documents. Sources : Crossref