A bijection for nonorientable general maps
Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 4, pp. 733-791.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We give a different presentation of a recent bijection due to Chapuy and Dołęga for nonorientable bipartite quadrangulations and we extend it to the case of nonorientable general maps. This can be seen as a Bouttier–Di Francesco–Guitter-like generalization of the Cori–Vauquelin–Schaeffer bijection in the context of general nonorientable surfaces. In the particular case of triangulations, the encoding objects take a particularly simple form and this allows us to recover a famous asymptotic enumeration formula found by Gao.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/153
Classification : 05-XX
Mots-clés : map, graph, bijection, nonorientable surface, triangulation, Brownian surface
@article{AIHPD_2022__9_4_733_0,
     author = {Bettinelli, Jeremie},
     title = {A bijection for nonorientable general maps},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {733--791},
     volume = {9},
     number = {4},
     year = {2022},
     doi = {10.4171/aihpd/153},
     mrnumber = {4525144},
     zbl = {1509.05028},
     language = {en},
     url = {http://archive.numdam.org/articles/10.4171/aihpd/153/}
}
TY  - JOUR
AU  - Bettinelli, Jeremie
TI  - A bijection for nonorientable general maps
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2022
SP  - 733
EP  - 791
VL  - 9
IS  - 4
UR  - http://archive.numdam.org/articles/10.4171/aihpd/153/
DO  - 10.4171/aihpd/153
LA  - en
ID  - AIHPD_2022__9_4_733_0
ER  - 
%0 Journal Article
%A Bettinelli, Jeremie
%T A bijection for nonorientable general maps
%J Annales de l’Institut Henri Poincaré D
%D 2022
%P 733-791
%V 9
%N 4
%U http://archive.numdam.org/articles/10.4171/aihpd/153/
%R 10.4171/aihpd/153
%G en
%F AIHPD_2022__9_4_733_0
Bettinelli, Jeremie. A bijection for nonorientable general maps. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 4, pp. 733-791. doi : 10.4171/aihpd/153. http://archive.numdam.org/articles/10.4171/aihpd/153/

Cité par Sources :